Hybrid dielectric non-volatile memory with nano particles (Si/SiO2 core/shell) as charge trapping layer
    3.
    发明授权
    Hybrid dielectric non-volatile memory with nano particles (Si/SiO2 core/shell) as charge trapping layer 有权
    具有纳米颗粒(Si / SiO2核/壳)作为电荷捕获层的混合电介质非易失性存储器

    公开(公告)号:US09406765B1

    公开(公告)日:2016-08-02

    申请号:US14811849

    申请日:2015-07-29

    Abstract: Si/SiO2 core/shell nanostructures with sizes below 30 nm as trapping points in UV curable hybrid organic-inorganic gate dielectrics are presented in order to investigate printable nano floating gate transistors. Not only does the novelty of this invention comes from fabricating high-quality hybrid organic/inorganic gate dielectric layer by Sol-Gel process at low temperature but also incorporating the monolayer of high-density of Si nanoparticles (NPs) without obvious interface defects and keeping the quality of dielectric layers. Fixed-charge trapping defects are successfully removed from hybrid dielectrics by UV curing together with low temperature thermal curing and mobile charges solely related to Si/SiO2 core/shell nanostructures on charge trapping layer clearly demonstrate memory effects on printable device. Thin/uniform SiO2 shell on each Si NP functions as tunneling layer of flash memory devices, significantly simplifying the fabrication of printable nano floating gate memory device.

    Abstract translation: 提出了尺寸低于30nm的Si / SiO 2核/壳纳米结构作为紫外线固化混合有机 - 无机栅极电介质中的捕集点,以便研究可印刷的纳米浮栅晶体管。 本发明的新颖性不仅在于通过溶胶 - 凝胶法在低温下制造高质量的混合有机/无机栅介电层,而且还掺入高密度的Si纳米颗粒(NP)的单层,而没有明显的界面缺陷和保持 电介质层的质量。 固定电荷捕获缺陷通过UV固化与低温热固化以及仅与电荷捕获层上的Si / SiO 2核/壳纳米结构相关的移动电荷成功地从混合电介质中去除,清楚地显示了对可印刷器件的记忆效应。 每个Si NP上的薄/均匀的SiO 2壳体用作闪存器件的隧道层,显着简化了可印刷的纳米浮动栅极存储器件的制造。

    Conductive thin film comprising silicon-carbon composite as printable thermistors
    4.
    发明授权
    Conductive thin film comprising silicon-carbon composite as printable thermistors 有权
    包含硅 - 碳复合材料作为可印刷热敏电阻的导电薄膜

    公开(公告)号:US09281104B2

    公开(公告)日:2016-03-08

    申请号:US14451444

    申请日:2014-08-05

    Inventor: Caiming Sun

    Abstract: A method of fabricating a temperature sensing device based on printed silicon-carbon nanocomposite film is disclosed. This method includes high-crystal-quality Si nanoparticles (NPs) homogeneously mixed with carbon NPs and Si—C nanocomposites printed as negative temperature coefficient (NTC) thermistor. These mixtures of Si and C NPs are formulated into screen printing paste with acrylic polymer binder and ethylene glycol (EG) as solvent. This composite paste can be successfully printed on flexible substrates, such as paper or plastics, eventually making printable NTC thermistors quite low-cost. Si and carbon powders have size range of 10 nanometers to 100 micrometers and are mixed together with weight ratios of 100:1 to 10:1. More carbon content, higher conductivity of printed Si—C nanocomposite films keeping similar sensitivity of high-quality Si NPs. With homogeneous distribution of carbon particles in printed films, electrons can tunnel from silicon to carbon and high-conductivity carbon microclusters enhanced hopping process of electrons in printed nanocomposite film. The measured sensitivity 7.23%/° C. of printed Si—C nanocomposite NTC thermistor is approaching the reported value of 8.0-9.5%/° C. for intrinsic silicon bulk material near room temperature, with the quite low resistance of 10 kΩ-100 kΩ. This NTC thermistor is quite suitable for low-cost readout circuits and the integrated systems target to be disposable temperature sensors.

    Abstract translation: 公开了一种制造基于印刷硅 - 碳纳米复合膜的温度感测装置的方法。 该方法包括与碳NPs均匀混合的高品质Si纳米粒子(NPs)和作为负温度系数(NTC)热敏电阻印刷的Si-C纳米复合材料。 将这些Si和C NPs的混合物配制成具有丙烯酸聚合物粘合剂和乙二醇(EG)作为溶剂的丝网印刷浆料。 该复合糊剂可以成功地印刷在诸如纸或塑料的柔性基材上,最终使可印刷的NTC热敏电阻成本低廉。 Si和碳粉的尺寸范围为10纳米至100微米,并以100:1至10:1的重量比混合在一起。 印刷的Si-C纳米复合薄膜的碳含量越高,导电性越好,高质量的Si NPs具有相似的灵敏度。 随着印刷膜中碳粒子的均匀分布,电子可以从硅到碳,高导电性碳微团簇增强印刷纳米复合薄膜电子的跳跃过程。 印刷的Si-C纳米复合材料NTC热敏电阻的测量灵敏度为7.23%/℃接近室温附近的本征硅体材料的报告值为8.0-9.5%/℃,具有相当低的10kΩ/ 100 k&OHgr; 该NTC热敏电阻非常适用于低成本读出电路,集成系统目标是一次性温度传感器。

Patent Agency Ranking