摘要:
In the plasma display apparatus, address discharge is caused stably. For this purpose, one of a forced initializing operation and a selective initializing operation is performed in the initializing period. Then, one field includes a specific-cell initializing subfield having an initializing period in which a forced initializing operation is performed in a specific discharge cell and a selective initializing operation is performed in the other discharge cells. In the address period of the specific-cell initializing subfield, the period in which a scan pulse and an address pulse are simultaneously applied to a discharge cell having undergone the selective initializing operation in the initializing period of the specific-cell initializing subfield is made longer than the period in which a scan pulse and an address pulse are simultaneously applied to a discharge cell having undergone the forced initializing operation in the initializing period of the specific-cell initializing subfield.
摘要:
The wall charge is appropriately adjusted in the initializing period, and occurrence of an abnormal discharge and an unlit cell is suppressed in the address period. Therefore, a plasma display device has a plasma display panel having a plurality of discharge cells including a display electrode pair that is formed of a scan electrode and a sustain electrode, and a scan electrode driving circuit. The scan electrode driving circuit disposes a plurality of subfields having an initializing period, an address period, and a sustain period in one field, generates a decreasing down-ramp voltage in the initializing period, and generates a negative scan pulse voltage and applies it to the scan electrodes in the address period. In the initializing period, after the generation of the down-ramp voltage, the scan electrode driving circuit generates negative pulse voltage lower than the minimum voltage of the down-ramp voltage and applies it to the scan electrodes.
摘要:
The present invention provides a method of driving a plasma display apparatus, which allows a high-luminance large-sized panel to have stable address discharge, with increase in power consumption suppressed. In the method, one field is divided into a plurality of subfields, each of which having an address period and a sustain period. A ramp voltage is applied to the scan electrodes in the end of the sustain period. The ramp voltage increases from a base potential toward a predetermined voltage, after reaching the predetermined voltage, the ramp voltage is maintained at the voltage for a predetermined period of time and decreases to the base potential. Besides, when the number of the sustain pulses is not greater than a predetermined threshold in a subfield, the predetermined period of time of an immediately after subfield is determined to be longer than the predetermined period of time of other subfields.
摘要:
A stable address discharge is caused by preventing an increase in the scan pulse voltage (amplitude) necessary for causing a stable address discharge, and thereby achieves high image display quality. For this purpose, the following operations are performed. The image display area of a plasma display panel is divided into a plurality of regions. In each region, the rate of the number of discharge cells to be lit with respect to the number of all discharge cells in each region is detected, as a partial light-emitting rate of each region, and the partial light-emitting rate is detected in each subfield. The region having the maximum partial light-emitting rate is detected and set as a first region. The regions adjacent to the first region are set as second regions, and a predetermined offset value is added to the partial light-emitting rates of the second regions so as to provide corrected partial light-emitting rates. Magnitude comparison is performed between the partial light-emitting rates and corrected partial light-emitting rates, and the order of address operations on the respective regions is determined based on the result of the magnitude comparison.
摘要:
In a plasma display apparatus, contrast is enhanced and a stable address discharge is caused. For this purpose, one of a forced initializing operation and a selective initializing operation is performed in initializing periods. A specified-cell initializing subfield and a selective initializing subfield are set in one field. In the specified-cell initializing subfield, the forced initializing operation is performed on specified discharge cells and the selective initializing operation is performed on the other discharge cells. In the selective initializing subfield, the selective initializing operation is performed on all the discharge cells. In the selective initializing period, a down-ramp waveform voltage is applied to the scan electrodes and a positive voltage is applied to the data electrodes. In the selective initializing subfield, based on the load calculated in the address period of the immediately preceding subfield, the minimum voltage of the down-ramp waveform voltage is controlled.
摘要:
The present invention allows a plasma display apparatus having a high-luminance panel to decrease initializing bright points that easily occur just after power-on of the apparatus, enhancing the quality of display image. The panel has discharge cells, each of which including a data electrode, and a display electrode pair formed of a scan electrode and a sustain electrode. In the driving method of the panel, one field period is formed of subfields, each of which including an initializing period for generating initializing discharge in the discharge cells, an address period for applying scan pulses to the scan electrodes and applying address pulses to the data electrodes, and a sustain period for applying sustain pulses to the data electrode pairs. In the structure above, a predetermined period after power-off of the apparatus has no generation of the address pulses, the scan pulses, and the sustain pulses.
摘要:
Stable address discharge is caused even in a plasma display panel where the definition is enhanced and the screen is enlarged. For this purpose, in a driving method of a plasma display panel, the image display region of the panel is divided into a plurality of partial display regions each of which includes a plurality of consecutively arranged scan electrodes. In each partial display region, a sequential address operation of sequentially applying scan pulses to the scan electrodes based on the arranging sequence of the scan electrodes on the panel is performed in the address period. To the scan electrode to which a scan pulse is to be firstly applied in the address period, a scan pulse of which the pulse width is set longer than that of the scan pulse to be applied to the other scan electrodes is applied.
摘要:
A stable address discharge is caused by preventing an increase in the necessary scan pulse voltage (amplitude), and thereby achieves high image display quality. For this purpose, the image display area of a plasma display panel is divided into a plurality of regions, and a partial light-emitting rate is detected in each region. The partial light-emitting rate in a current subfield is set as a first partial light-emitting rate. The partial light-emitting rate used for magnitude comparison between the partial light-emitting rates in a subfield identical with the current subfield in a field immediately preceding the field to which the current subfield belongs to is set as a second partial light-emitting rate. The absolute value of the difference between the first partial light-emitting rate and the second partial light-emitting rate is calculated in each region. In the region where the value is equal to or larger than a light-emitting rate threshold value, the first partial light-emitting rate is used for the magnitude comparison between the partial light-emitting rates in the current subfield. In the region where the value is smaller than the light-emitting rate threshold value, the second partial light-emitting rate is used for the magnitude comparison between the partial light-emitting rates in the current subfield.
摘要:
The wall charge is appropriately adjusted in the initializing period, and occurrence of an abnormal discharge and an unlit cell is suppressed in the address period. Therefore, a plasma display device has a plasma display panel having a plurality of discharge cells including a display electrode pair that is formed of a scan electrode and a sustain electrode, and a scan electrode driving circuit. The scan electrode driving circuit disposes a plurality of subfields having an initializing period, an address period, and a sustain period in one field, generates a decreasing down-ramp voltage in the initializing period, and generates a negative scan pulse voltage and applies it to the scan electrodes in the address period. In the initializing period, after the generation of the down-ramp voltage, the scan electrode driving circuit generates negative pulse voltage lower than the minimum voltage of the down-ramp voltage and applies it to the scan electrodes.
摘要:
In a plasma display apparatus displaying a stereoscopic image, crosstalk is reduced and an address discharge is caused stably. For this purpose, in the plasma display apparatus displaying a stereoscopic image, each field has a plurality of subfields, each having a sustain period where an up-ramp waveform voltage is applied to the scan electrodes after all the sustain pulses are generated. The luminance weights of the respective subfields are set such that the subfield having the lightest luminance weight is generated first in each field, the subfield having the heaviest luminance weight is generated second, and the third subfield and those thereafter have luminance weights sequentially decreasing. The up-ramp waveform voltage in the sustain period of the first subfield in each field is generated so as to have a gradient gentler than that of the up-ramp waveform voltage in the sustain periods of the subfields generated second and thereafter.