摘要:
Embodiments of the present invention are directed to optoelectronic network switches. In one embodiment, an optoelectronic switch includes a set of roughly parallel input waveguides and a set of roughly parallel output waveguides positioned roughly perpendicular to the input waveguides. Each of the output waveguides crosses the set of input waveguides. The optoelectronic switch includes at least one switch element configured to switch one or more optical signals transmitted on one or more input waveguides onto one or more crossing output waveguides.
摘要:
Embodiments of the present invention are directed to implementing high-radix switch topologies on relatively lower-radix physical networks. In one embodiment, the method comprises constructing the physical network (702) composed of one or more optical switches connected via one or more waveguides. A desired switch topology (704) is then designed for implementation on the physical network. The switch topology is then overlain on the switch network by configuring the optical switches and waveguides (706) to implement the switch topology on the physical network. The optical switches can be reconfigured following a transmission over the physical network and can be configured to implement circuit switching or packet switch.
摘要:
Embodiments of the present invention are directed to optoelectronic network switches. In one embodiment, an optoelectronic switch includes a set of roughly parallel input waveguides and a set of roughly parallel output waveguides positioned roughly perpendicular to the input waveguides. Each of the output waveguides crosses the set of input waveguides. The optoelectronic switch includes at least one switch element configured to switch one or more optical signals transmitted on one or more input waveguides onto one or more crossing output waveguides.
摘要:
Embodiments of the present invention are directed to optical broadcast systems (100,140,160,180). The nodes of the system can be any combination of cores, caches, input/output devices, and memory, or any other information processing, transmitting, or storing device. The optical broadcast system includes an optical broadcast bus (142,162,182). Any node of the system in optical communication with the broadcast bus can broadcast information in optical signals to all other nodes in optical communication with the broadcast bus.
摘要:
Embodiments of the present invention are directed to optical broadcast systems. The nodes of the system can be any combination of cores, caches, input/output devices, and memory, or any other information processing, transmitting, or storing device. The optical broadcast system includes an optical broadcast bus. Any node of the system in optical communication with the broadcast bus can broadcast information in optical signals to all other nodes in optical communication with the broadcast bus.
摘要:
A multi-core processor includes at least one first core and at least one second core. The first core is optimized to run applications, and the second core is optimized to meet the computing demands of operating-system-like code. The first core and the second core execute the same instruction set.
摘要:
A distributed balanced tree having a plurality of nodes distributed across a plurality of servers is accessed. Version information associated with a node of the distributed balanced tree is retrieved. Validity of a lookup transaction performed on the balanced tree is determined by verifying a version value of only the leaf node accessed during the lookup operation against the retrieved version information.
摘要:
Embodiments of the present invention relate to systems and methods for distributing an intentionally skewed optical-clock signal to nodes of a source synchronous computer system. In one system embodiment, a source synchronous system comprises a waveguide, an optical-system clock optically coupled to the waveguide, and a number of nodes optically coupled to the waveguide. The optical-system clock generates and injects a master optical-clock signal into the waveguide. The master optical-clock signal acquiring a skew as it passes between nodes. Each node extracts a portion of the master optical-clock signal and processes optical signals using the portion of the master optical-clock signal having a different skew for the respective extracting node.
摘要:
A distributed balanced tree having a plurality of nodes distributed across a plurality of servers is accessed. Version information associated with a node of the distributed balanced tree is retrieved. Validity of a lookup transaction performed on the balanced tree is determined by verifying a version value of only the leaf node accessed during the lookup operation against the retrieved version information.