Abstract:
The disclosed device for detecting the position and dose distribution of a therapeutic proton beam emitted in a pencil beam scanning mode comprises: a proton beam progressing position detection unit comprising a plurality of first optical fibers arranged along the first direction and a plurality of second optical fibers arranged along the second direction which is different from the first direction; and a proton beam dose distribution detection unit comprising a plurality of optical wavelength converter, each of which comprises an optical wavelength conversion disk and an optical wavelength-converting optical fibers arranged along the outer circumference of the optical wavelength conversion disk. The proton beam progressing position detection unit detects a proton beam progressing position through the arrangement of the first and second optical fibers, and the proton beam dose distribution detection unit detects a dose distribution of the proton beam progressing direction through a plurality of optical wavelength conversion disks.
Abstract:
Disclosed is a proton beam detection device comprising a sensor having optical fiber of an arrangement structure capable of accurately and efficiently detecting proton dose distribution such as bragg peak, spread out bragg peak (SOBP) and symmetry of a therapeutic proton beam emitted in a scattering mode. The proton beam detection device, which detects a proton beam emitted from a proton beam source in a scattering mode, comprises a sensor having a plurality of detection modules including reference optical fiber and detection optical fiber having a length longer than the length of the reference optical fiber, the plurality of detection modules being diagonally arranged in the depth direction along which the proton beam emitted from the proton beam source proceeds.