Abstract:
The disclosed device for detecting the position and dose distribution of a therapeutic proton beam emitted in a pencil beam scanning mode comprises: a proton beam progressing position detection unit comprising a plurality of first optical fibers arranged along the first direction and a plurality of second optical fibers arranged along the second direction which is different from the first direction; and a proton beam dose distribution detection unit comprising a plurality of optical wavelength converter, each of which comprises an optical wavelength conversion disk and an optical wavelength-converting optical fibers arranged along the outer circumference of the optical wavelength conversion disk. The proton beam progressing position detection unit detects a proton beam progressing position through the arrangement of the first and second optical fibers, and the proton beam dose distribution detection unit detects a dose distribution of the proton beam progressing direction through a plurality of optical wavelength conversion disks.
Abstract:
The present invention relates to a conversion device for converting a treatment beam for treating a lesion of a subject, comprising: a collimator unit to which the treatment beam is incident and which has a plurality of slits; and a scattering unit that scatters the treatment beam that has passed through the collimator unit.
Abstract:
A body-insertable device having an adjustable radiation emission direction and radiation emission range, which includes a first outer body extending to be long and an accommodation space having a first accommodation space and a second accommodation space having different distances to the first outer body.
Abstract:
Disclosed is a proton beam detection device comprising a sensor having optical fiber of an arrangement structure capable of accurately and efficiently detecting proton dose distribution such as bragg peak, spread out bragg peak (SOBP) and symmetry of a therapeutic proton beam emitted in a scattering mode. The proton beam detection device, which detects a proton beam emitted from a proton beam source in a scattering mode, comprises a sensor having a plurality of detection modules including reference optical fiber and detection optical fiber having a length longer than the length of the reference optical fiber, the plurality of detection modules being diagonally arranged in the depth direction along which the proton beam emitted from the proton beam source proceeds.
Abstract:
The present invention relates to a body insertable device having an outer body being bent; and an inner body positioned inside the outer body, having an accommodation space in which the resource soured is accommodated, and being capable of rotating inside the outer body, wherein a radiation emission direction is continuously adjusted by rotation of the inner body.