-
1.
公开(公告)号:US20160178347A1
公开(公告)日:2016-06-23
申请号:US14578597
申请日:2014-12-22
Inventor: YI-YUH HWANG , WEI-GUO CHANG , CHIN-DER HWANG , GUANG-SHEEN LIU , WEN-JEN LIN , PING-YA KO
CPC classification number: G01B11/002 , G01B9/02094
Abstract: A quick subpixel absolute positioning device and method are introduced. The method includes the steps of (A) capturing a real-time speckle pattern of a target surface; (B) providing a coarse-precision speckle coordinate pattern and a plurality of fine-precision speckle coordinate patterns, wherein the coarse-precision speckle coordinate pattern and the fine-precision speckle coordinate patterns include a coordinate value; (C) comparing the real-time speckle coordinate pattern with the coarse-precision speckle coordinate pattern by an algorithm and then comparing the real-time speckle coordinate pattern with the fine-precision speckle coordinate patterns to obtain a coordinate value, wherein each said coarse-precision speckle coordinate pattern corresponds to a set of fine-precision speckle coordinate patterns, and the fine-precision speckle coordinate patterns are obtained when the coarse-precision speckle coordinate pattern is captured again and then captured repeatedly according to a fixed fine-precision displacement distance. Accordingly, the subpixel positioning is attained by quick comparison and manifests high precision.
Abstract translation: 介绍了一种快速子像素绝对定位装置和方法。 该方法包括以下步骤:(A)捕获目标表面的实时散斑图案; (B)提供粗精度散斑坐标图案和多个精细散斑坐标图案,其中粗精度散斑坐标图案和精细散斑坐标图案包括坐标值; (C)通过算法将实时散斑坐标图与粗精度散斑坐标图进行比较,然后将实时散斑坐标图与精细散斑坐标图进行比较,得到坐标值,其中每个所述粗 - 精密斑点坐标图案对应于一组精细散斑坐标图案,并且当再次捕获粗精度散斑坐标图案时,获得精细散斑坐标图,然后根据固定的精密位移重复捕获 距离。 因此,通过快速比较实现子像素定位,显示出高精度。
-
公开(公告)号:US20210190596A1
公开(公告)日:2021-06-24
申请号:US17124523
申请日:2020-12-17
Inventor: SHIANG-FENG TANG , SHUN-LUNG YEN , KUN-CHI LO , WEN-JEN LIN
IPC: G01J5/02
Abstract: A high-precision non-contact temperature measurement device includes: a thermal insulation box made of a thermal insulation material and having therein a receiving space; a dynamic constant-temperature feedback control module for controlling temperature of the receiving space; and a non-temperature-sensing thermal imager disposed in the receiving space. The device achieves system thermal insulation within a non-contact temperature measurement gauge, maintains the overall closed system dynamically at constant temperature, compensates for effects of internal chip self-heating effect and visual field background temperature variation, and finally calculates average temperature of surfaces of a target precisely with an imaging, non-contact temperature measurement gauge and a temperature calibration algorithm widely used in thermal-imaging non-contact temperature measurement.
-