Abstract:
Among other aspects, provided herein are multi-armed polymer conjugates comprising an alkanoate-linker, compositions comprising such conjugates, and related methods of making and administering the same. Methods of treatment employing such conjugates and related uses are also provided. The conjugates are prepared with high drug loading efficiencies.
Abstract:
Provided herein are polymeric α-hydroxy aldehyde or α-hydroxy ketone reagents which can be conjugated to amine-containing compounds to form stable conjugates in a single-step reaction. In selected embodiments, the polymeric reagent itself incorporates an internal proton-abstracting (basic) functional group, to promote more efficient reaction. The substituent is appropriately situated, via a linker if necessary, to position the group for proton abstraction, preferably providing a 4- or 5-bond spacing between the abstracting atom and the hydrogen atom on the α-carbon. Also provided are methods of using the reagents and stable, solubilized conjugates of the reagents with biologically active compounds. In preferred embodiments, the polymeric component of the reagent or conjugate is a polyethylene glycol.
Abstract:
Provided herein are polymeric α-hydroxy aldehyde or α-hydroxy ketone reagents which can be conjugated to amine-containing compounds to form stable conjugates in a single-step reaction. In selected embodiments, the polymeric reagent itself incorporates an internal proton-abstracting (basic) functional group, to promote more efficient reaction. The substituent is appropriately situated, via a linker if necessary, to position the group for proton abstraction, preferably providing a 4- or 5-bond spacing between the abstracting atom and the hydrogen atom on the α-carbon. Also provided are methods of using the reagents and stable, solubilized conjugates of the reagents with biologically active compounds. In preferred embodiments, the polymeric component of the reagent or conjugate is a polyethylene glycol.
Abstract:
Provided herein are polymeric α-hydroxy aldehyde or α-hydroxy ketone reagents which can be conjugated to amine-containing compounds to form stable conjugates in a single-step reaction. In selected embodiments, the polymeric reagent itself incorporates an internal proton-abstracting (basic) functional group, to promote more efficient reaction. The substituent is appropriately situated, via a linker if necessary, to position the group for proton abstraction, preferably providing a 4- or 5-bond spacing between the abstracting atom and the hydrogen atom on the α-carbon. Also provided are methods of using the reagents and stable, solubilized conjugates of the reagents with biologically active compounds. In preferred embodiments, the polymeric component of the reagent or conjugate is a polyethylene glycol.
Abstract:
Provided herein are water-soluble carbohydrate polymers which are monoderivatized at their reducing terminus, such that the carbohydrate polymers can be selectively conjugated at a single location. Also provided are methods of preparation and conjugation of the monoderivatized carbohydrate polymers.
Abstract:
Methods for forming maleimide functionalized polymers are provided. In one such embodiment, a maleimide functionalized polymer is prepared in a method that includes a step of carrying out a reverse Diels-Alder reaction. Intermediates useful in the methods, as well as methods for preparing the intermediates, are also provided. Also provided are polymeric reagents, methods of using polymeric reagents, compounds and conjugates.
Abstract:
The present invention is directed to branched reactive water-soluble polymers comprising at least two polymer arms, such as poly(ethylene glycol), attached to a central aliphatic hydrocarbon core molecule through heteroatom linkages. The branched polymers bear at least one functional group for reacting with a biologically active agent to form a biologically active conjugate. The functional group of the branched polymer can be directly attached to the aliphatic hydrocarbon core or via an intervening linkage, such as a heteroatom, -alkylene-, —O-alkylene-O—, -alkylene-O-alkylene-, -aryl-O—, —O-aryl-, (—O-alkylene-)m, or (-alkylene-O—)m linkage, wherein m is 1-10.
Abstract:
Among other aspects, provided herein are multi-armed polymer conjugates comprising an alkanoate-linker, compositions comprising such conjugates, and related methods of making and administering the same. Methods of treatment employing such conjugates and related uses are also provided. The conjugates are prepared with high drug loading efficiencies.
Abstract:
The invention relates to (among other things) polymer-des-ethyl sunitinib conjugates and related compounds. A compound of the invention, when administered by any of a number of administration routes, exhibits advantages over des-ethyl sunitinib in unconjugated form.
Abstract:
Provided herein are polymeric α-hydroxy aldehyde or α-hydroxy ketone reagents which can be conjugated to amine-containing compounds to form stable conjugates in a single-step reaction. In selected embodiments, the polymeric reagent itself incorporates an internal proton-abstracting (basic) functional group, to promote more efficient reaction. The substituent is appropriately situated, via a linker if necessary, to position the group for proton abstraction, preferably providing a 4- or 5-bond spacing between the abstracting atom and the hydrogen atom on the α-carbon. Also provided are methods of using the reagents and stable, solubilized conjugates of the reagents with biologically active compounds. In preferred embodiments, the polymeric component of the reagent or conjugate is a polyethylene glycol.