Abstract:
An apparatus for reducing accumulated X-ray dosage during a fluoroscopic examination adaptively varies the time between exposures, X-ray beam strength, and beam extent and aim point during the course of the procedure in real-time. A temporal sequence image analyzer identifies a catheter in the fluoroscopic image and forms a prediction of its movement based on a time-series of fluoroscopic images. This prediction model is used to modulate the X-ray beam to produce a much smaller fluoroscopic image including only the area in the vicinity of the catheter tip. An output image synthesizer produces a useful output image by combining these stored sub-images.
Abstract:
The surface of the molten weld pool and surrounding workpiece area are floodlighted during an arc welding operation by a narrowband light source such as a laser in order to highlight the pool boundary and yield an image which is easily computer processed to give the pool perimeter. An arc welding torch has built-in optical systems, one to route laser energy via a coherent optical fiber bundle to exit optics on the torch to project two spots of light onto the trailing side edges of the pool, another to image the weld region which is relayed to a remote camera. The difference between reflectance values and direction on the pool and workpiece surfaces accounts for the enhanced image.
Abstract:
A distance measurement system employs a monochromatic coherent light source which produces an outgoing ray which impinges upon a target reflector which reflects the beam back as a reflected beam to an interferometry detector. A portion of the outgoing ray also is delivered to the interferometry detector. As the target reflector position is changed, the interferometry detector continuously calculates changes in distance of the target reflector. The orientation angles of the target reflector are constantly and automatically adjusted so that the reflected light beam accurately strikes the interferometry detector. A misalignment detector senses the elevation offset and the azimuth offset of the target reflector and creates corresponding signals. The elevation and azimuth offset signals are then provided to an elevation actuator and an azimuth actuator, respectively, which correct the elevation and azimuth angles of the target reflector to maintain continuous reflection of the return beam to the interferometry detector. The misalignment detector either monitors a light source located near the interferometry detector, or splits off part of the monochromatic beam, which is directed to a four quadrant photodetector. Differences in the signal between opposite quadrants determine the angular pointing errors which are used to drive the azimuth and elevation actuators. This results in an interferometry measurement system which constantly measures distance and corrects for misalignment of the reflector.
Abstract:
A three-dimensional range camera, which produces a range map of the distances from a reference to each of M.times.N points in a scene, is modified to generate registered luminance and range images. The same sensor detects range and luminance variations. A planar pattern projector generates sequential presentations of time/space coded light rays which are projected onto the object. A linear array camera images the points of light on the object surface, and a processor analyzes one-dimensional scan signals to determine range. To detect luminance there is an additional presentation, either constant illumination or no artificial illumination, and the other scan signal yields luminance along the same strip of the scene.
Abstract:
A method of nondestructive testing of the surface of an object using vapor condensation, such as sputtering, evaporation, or gas disassociation, to lay a thin solid film upon the surface of the object to be tested. The film is either highly reflective or highly absorptive. Portions of the solid film are then removed from the surface, for example, by abrasion while the remaining coating material is in a pattern depending on anomalies. The surface is then irradiated and inspected under light and the differential reflection between the remaining coating material and the surface itself enhances the visibility of the crack or other surface characteristic. The technique is especially useful for detecting very small cracks in cutting or grinding implements made of compacted material.
Abstract:
An enhanced reality maintenance system for operating in a hazardous or inaccessible environment employs an environment modeler which is supplied with spatial parameters of a given environment and creates a computer model of the environment. An environment renderer creates a plurality of images, each corresponding to a viewing location and orientation, `viewpoint`. A remotely operated vehicle (ROV) attached to a base unit by a tether cord or radio link navigates in the environment. The ROV has a spatial imaging device, such as a video camera, and actuators which propel it through the environment. Its position and orientation are determined by a position and attitude (P&A) sensing unit, and are passed to an ROV renderer which creates an image of a prestored model of the ROV having the same location and orientation as the ROV and viewed from a specified viewpoint. The viewpoints may be predetermined, provided to the system or may be interactively determined as an offset from the ROV position and orientation. Alternative embodiments include an image archive and comparison unit capable of storing images linked to information of the image acquisition, retrieving stored images with the image acquisition into and transforming one of the images to match the image acquisition information of the other image.
Abstract:
A non-contact sensor system measures distance from a reference plane to many remote points on the surface of an object. The set of points at which range is measured lie along a straight line (N points) or are distributed over a rectangular plane (M.times.N points). The system is comprised of a pattern generator to produce a 1.times.N array of time/space coded light rays, optionally a means such as a rotating mirror to sweep the coded light rays orthogonally by steps, a linear array camera to image subsets of the light rays incident on the object surface, and a high speed range processor to determine depth by analyzing one-dimensional scan signals. The range camera output is a one-dimensional profile or a two-dimensional area range map, typically for inspection and robotic vision applications.
Abstract:
Time sampled data from many hundreds of sensors spatially arranged on a subject is acquired, displayed and archived in real-time. A redundant array of acquisition processors coupled to temporary storage device are controlled by a system control processor. As the data is acquired, an operator interacts with a display processor to select sensors mapped on a computer model of the subject. The selected sensors are displayed as real-time `postage stamp` traces each located in a position reflecting their position on the subject. During acquisition in the background, or at some time later, the acquired data is archived onto a slower, but much larger data storage device such as a stream tape, or optical disk.
Abstract:
A real-time data processing system employs a control computer which defines a pre-processing arrangement of data channels to speed processing, and an arrangement of output data channels to provide a desired output format. The data channels are samples and arranged into a data packet which is passed to an array of digital signal processors (DSPs) arranged in a series of stages, with at least one DSP per stage. A front-end DSP receives the data packet and appends a control field having commands addressed to specific DSPs to the data packet along with adding a monitor field. The DSPs monitor the control field for commands addressed to it and then executes those. The status of the operation is written in the monitor field and the data packet is passed to DSPs of the next stage for `pipelined` processing. DSPs of the last stage collect the process portions of the data packet, assemble them according to the desired output format and pass on the completed data packet. The system control computer may monitor the monitor field of any data packet and determine the health of each DSP.
Abstract:
A method for measuring a local magnetic signal by estimating and eliminating the effects of one or more remote magnetic noise sources is provided. The method relies on "tagging" the undesired noise component of the local measurement in such a way as to allow separation of the noise component from the total measurement. The method makes use of the measurement apparatus already in place and does not require additional sensing channels.