Abstract:
A technique predicts failure of one or more storage devices of a storage array serviced by a storage system and for establishes one or more threshold conditions for replacing the storage devices. The predictive technique periodically monitors soft and hard failures of the storage devices (e.g., from Self-Monitoring, Analysis and Reporting Technology), as well as various usage counters pertaining to input/output (I/O) workloads and response times of the storage devices. A heuristic procedure may be performed that combines the monitored results to calculate the predicted failure and recommend replacement of the storage devices, using one or more thresholds based on current usage and failure patterns of the storage devices. In addition, one or more policies may be provided for replacing the storage devices in a cost-effective manner that ensures non-disruptive operation and/or replacement of the SSDs, while obviating a potential catastrophic scenario based on the usage and failure patterns of the storage devices.
Abstract:
A technique predicts failure of one or more storage devices of a storage array serviced by a storage system and for establishes one or more threshold conditions for replacing the storage devices. The predictive technique periodically monitors soft and hard failures of the storage devices (e.g., from Self-Monitoring, Analysis and Reporting Technology), as well as various usage counters pertaining to input/output (I/O) workloads and response times of the storage devices. A heuristic procedure may be performed that combines the monitored results to calculate the predicted failure and recommend replacement of the storage devices, using one or more thresholds based on current usage and failure patterns of the storage devices. In addition, one or more policies may be provided for replacing the storage devices in a cost-effective manner that ensures non-disruptive operation and/or replacement of the SSDs, while obviating a potential catastrophic scenario based on the usage and failure patterns of the storage devices.
Abstract:
A technique for load balancing uses heuristic-based algorithms with respect to input/output (I/O) latency of workloads destined to storage devices, e.g., solid state drives (SSDs), of a storage array attached to a storage system. Illustratively, “front-end” requests received from a host result in a back-end workload as those requests are processed by a storage I/O stack of the storage system and stored on the storage array. Accordingly, the technique maintains a consistent latency for the host requests (front-end) to control latency for the back-end workload. The load balancing technique illustratively load balances fixed (back-end) workloads having similar I/O sizes and I/O patterns. Illustratively, the technique balances the workloads across a plurality of storage ports over one or more I/O paths to the SSDs. Access to the SSDs may then be distributed among the storage ports.
Abstract:
A technique predicts failure of one or more storage devices of a storage array serviced by a storage system and for establishes one or more threshold conditions for replacing the storage devices. The predictive technique periodically monitors soft and hard failures of the storage devices (e.g., from Self-Monitoring, Analysis and Reporting Technology), as well as various usage counters pertaining to input/output (I/O) workloads and response times of the storage devices. A heuristic procedure may be performed that combines the monitored results to calculate the predicted failure and recommend replacement of the storage devices, using one or more thresholds based on current usage and failure patterns of the storage devices. In addition, one or more policies may be provided for replacing the storage devices in a cost-effective manner that ensures non-disruptive operation and/or replacement of the SSDs, while obviating a potential catastrophic scenario based on the usage and failure patterns of the storage devices.
Abstract:
A technique for load balancing uses heuristic-based algorithms with respect to input/output (I/O) latency of workloads destined to storage devices, e.g., solid state drives (SSDs), of a storage array attached to a storage system. Illustratively, “front-end” requests received from a host result in a back-end workload as those requests are processed by a storage I/O stack of the storage system and stored on the storage array. Accordingly, the technique maintains a consistent latency for the host requests (front-end) to control latency for the back-end workload. The load balancing technique illustratively load balances fixed (back-end) workloads having similar I/O sizes and I/O patterns. Illustratively, the technique balances the workloads across a plurality of storage ports over one or more I/O paths to the SSDs. Access to the SSDs may then be distributed among the storage ports.