Abstract:
A regenerator for a thermal cycle engine and methods for its manufacture. The regenerator has a random network of fibers formed to fill a specified volume and a material for cross-linking the fibers at points of close contact between fibers of the network. A method for manufacturing a regenerator has steps of providing a length of knitted metal tape and wrapping a plurality of layers of the tape in an annular spiral.
Abstract:
A regenerator for a thermal cycle engine and methods for its manufacture. The regenerator has a random network of fibers formed to fill a specified volume and a material for cross-linking the fibers at points of close contact between fibers of the network. A method for manufacturing a regenerator has steps of providing a length of knitted metal tape and wrapping a plurality of layers of the tape in an annular spiral.
Abstract:
A method for controlling the fuel-air ratio of a burner having a blower responsive to a blower drive signal for injecting air into the burner. The method is based at least on the concentration of a gas in an exhaust gas product of a combustion chamber of the burner and includes measuring the gas concentration in the exhaust gas product, deriving a gas concentration signal from the measured gas concentration, determining the fuel-air ratio from the gas concentration signal and the sign of the derivative of the gas concentration signal with respect to the blower drive signal, and controlling the fuel-air ratio by adjusting the air flow rate into the burner. The burner may be, for example, in a Stirling cycle engine.