Abstract:
A system for energy conversion, the system including a closed cycle engine containing a volume of working fluid, the engine comprising a first chamber defining an expansion chamber and a second chamber defining a compression chamber each separated by a piston attached to a connection member of a piston assembly, and wherein the engine comprises a heater body in thermal communication with the first chamber, and further wherein the engine comprises a cold side heat exchanger in thermal communication with the second chamber, and wherein a third chamber is defined within the piston, wherein the third chamber is in selective flow communication with the first chamber, the second chamber, or both.
Abstract:
An alpha type Stirling engine is provided and comprises an expansion cylinder and a compression cylinder, a regenerator, a cooler, and a heater. Each one of the expansion cylinder and the compression cylinder has a movable piston connected to a respective linear electric generator/motor, wherein the Stirling engine further comprises a control unit which is operatively connected to the linear electric generators/motors and which is configured to control the linear electric generators/motors individually so as to enable a different stroke length and/or motion profile of the piston in the expansion cylinder compared to the piston in the compression cylinder.
Abstract:
A monolithic heat exchanger body for inputting heat to a closed-cycle engine includes heating walls and heat sink, such as heat transfer regions. The heating walls are configured and arranged in an array of spirals or spiral arcs relative to a longitudinal axis of an inlet plenum. Adjacent portions of the heating walls respectively define corresponding heating fluid pathways fluidly communicating with the inlet plenum. At least a portion of the heat sink is disposed about at least a portion of the monolithic heat exchanger body. The heat sink includes working-fluid bodies including working-fluid pathways that have a heat transfer relationship with the heating fluid pathways. Respective ones of the heat transfer regions have a heat transfer relationship with a corresponding semiannular portion of the heating fluid pathways. Respective ones of the heat transfer regions include working-fluid pathways fluidly communicating between a heat input region and a heat extraction region.
Abstract:
A multi-stage Stirling cycle machine and a steady-state operating parameter control method therefor are disclosed. In the Stirling cycle machine, a mechanical energy input piston, a mechanical energy transfer double-acting free piston, and a mechanical energy output piston constitute a plurality of Stirling working units which are arranged in stages. The mechanical energy input piston is connected to a mechanical energy input apparatus. The mechanical energy output piston is connected to a mechanical energy output apparatus. When the Stirling cycle machine is used as an engine, a relatively small amount of mechanical energy is input into a mechanical energy input piston in a set of pistons, the mechanical energy is amplified by a multi-stage Stirling unit, and a relatively large amount of mechanical energy is then output by a mechanical energy output piston.
Abstract:
A piston apparatus includes a plurality of piston assemblies respectively having a first piston body and a first piston disposed within a first volume defined by the first piston body, a second piston body and a second piston disposed within a second volume defined by the second piston body, and a connection member coupled to the first piston and the second piston. The first and second volume respectively include an expansion chamber and a compression chamber defined by opposite sides of the corresponding piston. The respective expansion chambers fluidly communicate with a corresponding compression chamber of another one of the piston assemblies. The first volume of a first piston assembly fluidly communicates with the first volume and the second volume of a second piston assembly, and the first volume of a third piston assembly fluidly communicate with the first volume and the second volume of the second piston assembly.
Abstract:
A near adiabatic engine has four stages in a cycle: (1) a means of adiabatically expanding the working fluid during the downstroke from a high pressure/temperature level to a low level; (2) a means of cooling the working fluid at Bottom Dead Center (BDC); (3) a means of adiabatically compressing that fluid from a low pressure/temperature level at BDC to the higher level at Top Dead Center (TDC); and finally, (4) a means of passing that working fluid back to the high pressure/temperature source in a balanced pressure environment so as to minimize the resistance of that flow. This disclosure teaches the means of achieving (2) and (3) as follows: (2) a means is disclosed of BDC cooling of the expanded working fluid in the working chamber, and (3) a means is disclosed of adiabatically compressing the working fluid into the pump chamber before cycling the fluid.
Abstract:
Method and system for efficient energy recovery from heat source with external combustion engine. Invention include sequentially operating drive mechanism for power pistons and displacement pistons of gamma type Stirling engine, providing nearly ideal pistons operation sequence. Stirling engine is supplemented with working flow fluid control and separation member between working fluid reheater and rest of the engine during high pressure stage. Working fluid is circulated in flow control via one or more consecutive displacement cylinder/power cylinder stages before reheating. Control system is directing working fluid from inlet port to the first displacement cylinder, further to the first power cylinder and after expansion either to reheating or to the next displacement cylinder. Low temperature working fluid is finally directed back to the counter flow type reheater.
Abstract:
Multiple free-piston stirling-cycle machine modules are connected together in double-acting configurations that may be used as engines or heat pumps and scaled to any power level by varying the number of modules. Reciprocating piston assemblies oriented in balanced pairs reduce vibration forces. There are no buffer spaces. Linear motors or generators are packaged inside piston cavities entirely within the module working spaces. The external heat-accepting and heat-rejecting surfaces in one embodiment are directed along inward-facing and outward facing cylinders, and in another embodiment along parallel planes, simplifying thermal connections to the external heat source and sink.
Abstract:
A closed cycle heat engine having working fluid sealed between pistons of different diameters, that are connected by a piston rod, within cylinders that create air tight seals with the pistons. It can also be used as a heat pump.
Abstract:
Methods, systems, and devices are provided that may include Stirling cycle configurations and/or linear-to-rotary mechanisms in accordance with various embodiments. Some embodiments include a Stirling cycle device that may include a first hot piston contained within a first hot cylinder and a first cold piston contained within a first cold cylinder. A first single actuator may be configured to couple the first hot piston with the first cold piston such that the first hot piston and the first cold piston are on different thermodynamic circuits. The different thermodynamic circuits may include adjacent thermodynamic circuits. The Stirling cycle configuration may be configured as a single-acting alpha Stirling cycle configuration. Some embodiments include a linear-to-rotary mechanism device. The device may include multiple linkages. The device may include a cam plate coupled with the multiple linkages utilizing a cam and multiple cam followers. The linkages may include Watt linkages.