摘要:
An optical sensor comprising a waveguide having a sensing layer which is molecularly imprinted such that it will receive and retain target entities to be sensed, the optical sensor further comprising a detection apparatus arranged to detect a change of an optical property of the waveguide which occurs when the target entities are received and retained in the sensing layer.
摘要:
An optical sensor comprising a waveguide having a sensing layer which is molecularly imprinted such that it will receive and retain target entities to be sensed, the optical sensor further comprising a detection apparatus arranged to detect a change of an optical property of the waveguide which occurs when the target entities are received and retained in the sensing layer.
摘要:
A method of distinguishing between fluorescent light emitted by green fluorescent protein and fluorescent light emitted by auto-fluorescent molecules, the method comprising: using plane-polarised light to illuminate a sample containing green fluorescent protein and auto-fluorescent molecules; detecting the intensity of fluorescent light that is emitted with a first polarisation from the sample; detecting the intensity of fluorescent light that is emitted with a second polarisation from the sample; and subtracting a first of said detected intensities from a second of said detected intensities to obtain a difference signal.
摘要:
A novel single point leaky waveguide structure and its use as an optical sensor for the detection of particles is disclosed. The waveguide structure is fabricated to increase the overlap of the evanescent field extension from the sensor surface with particles in the bulk solution of a flowing system so as to place most of the volume of the particles within the evanescent field. Increasing the overlap of the evanescent field with the particles and permitting mode propagation along the direction of flow for a few millimetres provides an effective interrogation approach for multiple particle detection in a single flow channel.
摘要:
A waveguide structure comprising a medium disposed of a sensing layer (21), a second layer of material (22) having a refractive index greater than that of the medium, and a substrate (24). The structure defines a waveguide capable of supporting an optical mode confined in a sensing layer. The medium is adapted for performing chemical or biological reactions within the medium which will result in a change of an optical property of the sensing layer of the waveguide. The thickness and refractive indexes of the layers are chosen such that an optical mode confined in the sensing layer will suffer substantially anti-resonant reflection as a consequence of the interface between the sensing layer and the second layer and the interface between the second layer and the substrate. Alternatively, the waveguide may comprise a low index sensing medium held between a superstrate and a substrate each of which has a refractive index higher than that of the medium. The waveguide may be capable of supporting two modes, such that one of the modes may be used as a reference during measurement of optical properties of a medium. The waveguide may be capable of supporting a leaky waveguide mode, the presence of the leaky waveguide mode being indicated by a peak of light returned from the waveguide.