摘要:
In an implantable electrode for an electrode lead for a stimulation device for stimulating tissue, the electrode is formed as a biocompatible piezoelectric electrode which is adapted to be in direct electrical contact with tissue for electrically and mechanically stimulating the tissue and for detecting electrical and mechanical evoked response of the stimulated tissue. The stimulation device can include circuitry for making a diagnosis of a heart condition using signals received from the implantable electrode.
摘要:
An implantable heart analyzing device has a housing and a control circuit located within said housing. The control circuit generates an output signal adapted to actuate an activator, which is able to make a wall of the heart deflect or vibrate. The control circuit also communicates with a sensor, which can be identical with the activator, with which the movement of the heart wall can be sensed. The control circuit executes a procedure that involves the generation of an output signal and sensing a corresponding sensor signal, and to be able to derive information concerning the tension of the heart wall. An implantable heart analyzing includes the aforementioned heart analyzing device, as well as the activator and the sensor. The heart analyzing device and the system implement a method that results in generation of the aforementioned information concerning the tension of the heart wall.
摘要:
An implantable medical device has an oxygen sensor adapted to measure the level of oxygen in oxygenized blood, and to generate an oxygen measurement signal in dependence of the level of oxygen. The oxygen sensor is adapted to perform measurements inside the heart, of blood entering the left atrium of a patient's heart. The obtained oxygen measurement signal is compared to a predetermined threshold level and an indication signal is generated in dependence of the comparison. The, indication signal is indicative of the lung functionality of the patient.
摘要:
An implantable medical device applies an electric signal over two electrodes and measures the resulting electric signal over a candidate pair of neighboring electrodes on a lead for a first heart ventricle or over a candidate electrode of the lead and a case electrode. An impedance signal is determined for each candidate pair or electrode based on the applied signal and the measured resulting signal. A time difference between start of contraction in a second ventricle and the timing of local myocardial contraction as identified from the impedance signal at the site of the candidate pair or electrode is determined for each candidate pair or electrode. An optimal pacing electrode is selected to correspond to one of the electrodes of the candidate pair having the largest time difference or the candidate electrode having largest time difference.
摘要:
An implantable medical device applies an electric signal over two electrodes and measures the resulting electric signal over a candidate pair of neighboring electrodes on a lead for a first heart ventricle or over a candidate electrode of the lead and a case electrode. An impedance signal is determined for each candidate pair or electrode based on the applied signal and the measured resulting signal. A time difference between start of contraction in a second ventricle and the timing of local myocardial contraction as identified from the impedance signal at the site of the candidate pair or electrode is determined for each candidate pair or electrode. An optimal pacing electrode is selected to correspond to one of the electrodes of the candidate pair having the largest time difference or the candidate electrode having largest time difference.
摘要:
An implantable medical device has an impedance determiner for determining a cardiogenic impedance signal based on electric signals sensed by connected electrodes. A parameter calculator processes the impedance signal to calculate an impedance parameter representative of the cardiogenic impedance in connection with the diastolic phase of a heart cycle. This parameter is then employed by the device for monitoring acute decompensated heart failure status of a subject.
摘要:
An implantable bi-ventricular heart stimulating device and system, suitable for treating congestive heart failure, have a control circuit with first and second pacing circuits and first and second sensing circuits. The device operates with time cycles corresponding to normal heart cycles. The control circuit determines: (a) whether a signal typical of an evoked response to a pacing pulse delivered by the first pacing circuit is sensed within a first time interval and (b) whether a signal typical for an R-wave transferred from the second ventricle, or from some other part of the heart, to the first ventricle is detected within a first time window. The operation of the device depends on whether the conditions (a) and (b) are fulfilled.
摘要:
In an implantable heart stimulating device, system and method, a control circuit has first and second circuits for sensing and pacing. The first circuit can be connected to a first electrode member suited to be positioned in or at a first ventricle of the heart. The second circuit can be connected to a second electrode member suited to be positioned in or at a second ventricle of the heart. The control circuit is able to detect whether signals sensed by the second circuit are likely to be far field signals. The control circuit performs this detection by at least determining whether, during a predetermined time (length, more signals are sensed by the second circuit than by the first circuit.
摘要:
An implantable bi-ventricular heart stimulating device has a control circuit that within a time cycle, delivers pacing pulses with both first and second pacing circuits with a time gap between a pacing pulse delivered by these pacing circuits. The time gap can be such that a pacing pulse delivered by the second pacing circuits falls substantially within a first time interval in which an evoked response can be expected to a pacing pulse delivered by the first pacing circuit. The control circuit performs a temporary modification of the operation of the device such that during at least one time cycle no pacing pulse is delivered by the second pacing circuit during the first time interval.
摘要:
In a method and implantable medical device for ventricular tachyarrhythmia detection and classification, upon detection of a ventricular tachyarrhythmia based on an electrocardiogram signal, cardiogenic impedance data representative of ventricular volume dynamics are collected and used for classifying the detected tachyarrhythmia as stable or unstable. In the latter case but typically not in the former case, defibrillation shocks or other forms of therapy are applied to combat the unstable ventricular tachyarrhythmia.