摘要:
Described techniques enable a computing system to receive character string input (e.g., words, numbers, mathematical expressions, symbolic strings, etc.) by detecting and interpreting an input movement across a user-interface. A touch-based computing system may, for instance, detect an input movement by tracking the path of a pointing element (e.g., a stylus or finger) as it is dragged across a contact-sensitive input surface (e.g., a touch-sensitive screen or external touch pad). Then, the system may interpret the detected input movement using Hidden Markov Modeling.
摘要:
The systems and methods described herein may help to provide for more convenient, efficient, and/or intuitive operation of a user-interface. An example computer-implemented method may involve: (i) providing a user-interface comprising an input region; (ii) receiving data indicating a touch input at the user-interface; (iii) determining an active-input-region setting based on (a) the touch input and (b) an active-input-region parameter; and (iv) defining an active input region on the user-interface based on at least the determined active-input-region setting, wherein the active input region is a portion of the input region.
摘要:
Example method and systems for text-entry are disclosed. A method may involve displaying a user interface comprising a character line, the character line comprising a plurality of characters in a substantially linear arrangement. The method may then involve receiving a first input via a touch-sensitive input device, wherein the first input comprises a detected movement on a first portion of the touch-sensitive input device. Further, the method may involve, in response to receiving the first input, displaying an indication of a selected character. The method may then involve receiving a second input via the touch-sensitive input device, wherein the second input comprises a detected movement from the first portion to a second portion of the touch-sensitive input device and back to the first portion. The method may then involve displaying the selected character in a text-entry area of the user interface that is separate from the character line.
摘要:
A computing device configured to dynamically capture and store experience data received the by the computing device. An example method involves: (a) receiving first experience data that indicates at least one environmental condition; (b) selecting a capture mode from a plurality of capture modes based on the at least one environmental condition, where the capture mode defines a manner of capturing experience data; and (c) causing the computing device to operate in the selected capture mode, where operating in the selected capture mode includes capturing second experience data in the manner defined by the capture mode. The method may optionally additionally involve: (d) after entering the capture mode, receiving third experience data; (e) determining that the capture mode should be exited based on at least the received third experience data; and (f) based on the determination that the capture mode should be exited, exiting the capture mode such that at least one type of experience data is not captured.
摘要:
Methods and systems involving resolution of directional ambiguity between a graphical display and a touch-based user-interface are disclosed herein. An example system may be configured to: (a) cause a visual depiction of a first reference marker on a graphical display; (b) receive first input data indicating an initial touch input on a touch-based user-interface, where the initial touch input corresponds to an input-direction path having a first end and a second end, and where the touch input corresponds to movement of the input-direction path; (c) associate movement of the first reference marker with subsequent touch inputs; (d) receive second input data indicating a subsequent touch input; and (e) cause a visual depiction of movement of a second reference marker.
摘要:
An example method involves: providing a user-interface having a plurality of input regions, where one of the input regions is a home region, where each of the input regions is associated with a primary character from a set of primary characters, and where at least one of the input regions is associated with a subset of secondary characters from a set of secondary characters; receiving data indicating an input-movement from the home region to a second input region from the plurality of input regions that is associated with a subset of secondary characters; receiving data indicating an input-movement from the second input region to the home region; selecting, in response to the input-movement from the second input region to the home region, a character from the subset of secondary characters associated with the second input region; and causing the selected character to be displayed on a graphical display.
摘要:
Described techniques enable a computing system to receive character string input (e.g., words, numbers, mathematical expressions, symbolic strings, etc.) by detecting and interpreting an input movement across a user-interface. A touch-based computing system may, for instance, detect an input movement by tracking the path of a pointing element (e.g., a stylus or finger) as it is dragged across a contact-sensitive input surface (e.g., a touch-sensitive screen or external touch pad). Then, the system may interpret the detected input movement using Hidden Markov Modeling.
摘要:
Methods and systems for text input are provided. In one example, a head-mountable device (HMD) having a touch interface may be configured to receive touch inputs from a user to enter text. The touch interface may include input areas corresponding to characters. The HMD may be configured to determine characters and words the user wishes to enter according to different touch inputs, including land inputs, lift inputs, flick inputs, drag inputs, tap inputs, and scratch inputs. In one case, the HMD may determine subsets of characters for each letter in a word the user wishes to enter, and determine the word the user wishes to enter according to the subsets of characters. In another case, the HMD may determine a vector array corresponding to the word the user wishes to enter, and determine the word the user wishes to enter by comparing the vector array against word vector templates.
摘要:
A method for analyzing a subject-visit group of ECG waveforms captured digitally on an electrocardiograph machine, on a Holter monitor device or digitized from paper electrocardiograms. A cardiologist selects a subject-visit group from a number of subject-visit groups, and each ECG waveform of the subject-visit group is scanned for artifact. Those ECG waveforms containing artifact are annotated appropriately. A determination is made if measurement calipers are present in each ECG waveform, measurement calipers are added to ECG waveforms lacking measurement calipers, and a preliminary interpretation is assigned to each ECG waveform that lacks a preliminary interpretation. Each ECG waveform is assigned a grouping metric, and the ECG waveforms are segregated according to their grouping metric for display and evaluation.
摘要:
Methods and systems to allow users to gain the advantages of a large-format touch display by using smaller, cost-effective touch displays. Given two adjacent displays, regions may be created on both sides of the boundary between the displays. These regions may grow and shrink based on the user's movement, i.e., the velocity of a stylus or finger towards the boundary. If the user lifts his stylus within a region on one display, he may finish the tracking on the other by landing within the corresponding region of the latter display. This may allow a user to begin a drag on one display, drag towards another display, and “flyover” to the second display without slowing. The lift event may be removed when the first display detects the stylus being lifted as it moves towards the second. The landing on the second display may be removed.