摘要:
An image projecting apparatus comprises a light source for emitting light, a spatial light modulating element, an illuminating optical system for irradiating a light from the light source to the spatial light modulating element, and a projecting optical system for projecting an image of the spatial light modulating element. The illuminating optical system or the projecting optical system comprises a telecentric optical system and a light shielding frame disposed at a focus position of the telecentric optical system for controlling an angular component of a luminous flux of light emitted by the light source or the spatial light modulating element, respectively, to adjust the quality of the projected image.
摘要:
To effectively utilize a luminous flux from a light source thereby realizing a reflecting type color image projecting apparatus having a high brightness. The apparatus includes three sheets of reflecting type optical writing liquid crystal light valves, means for writing images of respective color components to the respective reflecting type optical writing liquid crystal light valves, a polarized beam splitter for splitting a light source luminous flux into polarized light illuminating luminous fluxes, means for separating only a green component of one of the polarized light illuminating luminous fluxes, means for separating the other one of the polarized light illuminating luminous fluxes into a red component and a blue component and a projecting lens. A back focus from the projecting lens to the reflecting type optical writing liquid crystal light valves can be shortened and utilization efficiency of a luminous flux from a light emitting source can more be enhanced than a conventional reflecting type color image projecting apparatus.
摘要:
A polarizing type optical apparatus has a first polarizing element disposed in a path of an incident luminous flux produced by a light source and a second polarizing element disposed in the path of a luminous flux reflected from the first polarizing element. The first polarizing element has a p polarized light component transmitting characteristic which varies less with respect to an incident angle of a luminous flux than that of the second polarizing element and has a p polarized light component transmittance which is higher than that of the second polarizing element, and the second polarizing element has an s polarized light component transmitting characteristic which varies less with respect to an incident angle of a luminous flux than that of the first polarizing element and has an s polarized light component transmittance which is lower than that of the first polarizing element, such that the incident luminous flux produced by the light source is irradiated onto the first polarizing element, the luminous flux reflected by the first polarizing element consists mainly of an s polarized light component, and the luminous flux reflected by the second polarizing element consists of a substantially pure s polarized light component.
摘要:
An optically addressed spatial light modulation system includes a ferroelectric liquid crystal spatial light modulator. A writing light source irradiates a writing light for recording an image onto the spatial light modulator. A read-out light source irradiates a bias light for adjusting the sensitivity of the spatial light modulator and a read-out light for reading a recorded image from the spatial light modulator. An adjusting circuit is used to adjust the bias light intensity or irradiation time in synchronism with the writing light to increase the sensitivity of the spatial light modulator. A driving circuit supplies writing voltage signals to the spatial light modulator. The irradiation times of the write light and the bias light overlap with the application of the writing voltage signals for a predetermined time for adjusting the sensitivity of the spatial light modulator.
摘要:
An optically addressed spatial light modulating system comprises a spatial light modulator using a liquid crystal material. A writing light irradiation device irradiates a writing light which records an image onto the spatial light modulator. A reading out light irradiation device irradiates a reading out light which is used to read out the recorded image from the spatial light modulator. A bias light irradiation device irradiates a bias light onto the spatial light modulator, and a bias light adjustment device changes at least one of the irradiation time and the light intensity of the bias light. A driving device supplies writing voltage signals to the spatial light modulator. The irradiation time of the write light and the irradiation time of the bias light overlap with the application time of the write voltage of the spatial light modulator for a predetermined amount of time for adjusting the sensitivity of the spatial light modulator. Thus, the changing of the recording sensitivity of the optically addressed spatial light modulator is facilitated. It is also possible to write data into the spatial light modulator operating at a high speed by changing the threshold of the write image and to record an image with low write light intensity.
摘要:
An optical microcantilever for a scanning near field microscope comprises a support section, a cantilever-shaped optical waveguide, and a light blocking wall. The optical waveguide has a free end, a fixed end fixed to the support section and terminating in a light input/output end, and a tip formed at a side of the free end of the cantilever and having a microscopic aperture at an end thereof. The light blocking wall blocks the transmission of light scattered from a region of the light input/output end in the direction of the tip of the optical waveguide.
摘要:
A near-field optical head applied for a head of an information recording/reading apparatus for realizing information recording and reading with high density recording medium at high speed and with reliability through interaction between a near-field light and a recording medium using a slider having a near-field optical probe. A slider (1) having a near-field optical probe is put into proximity to a recording medium (3). Further, a distance is reduced between a light emitting element (2) and a microscopic aperture (7). The microscopic aperture is controlled in protrusion amount from the recording medium (3) by a piezoelectric element. Due to this, the light intensity in the probe or light detecting section is increased to increase interaction with the recording medium (3). This realizes information recording and reading apparatus with high sensitivity and accuracy.
摘要:
A near-field optical head has a minute structure formed in the support member for interacting with a recording medium via near-field light. An optical waveguide is provided on the support member for guiding light between a light source and the minute structure. The optical waveguide has a core, a clad and a reflective surface, the core having an end face facing the reflective surface and being spaced therefrom so that light traveling through the optical waveguide is projected from the end face of the core onto the reflective surface and is reflected by the reflective surface toward the minute structure. Information is recorded to and/or read from the recording medium based on the scattering of near-field light between the recording medium and the minute structure while the near-field optical head is positioned over the surface of the recording medium.
摘要:
A near-field optical probe has a flat support member having opposed flat surfaces, and a tapered through-hole extends through the support member and terminates at one of the flat surfaces in a narrow aperture. A light collecting layer having a plurality of reflective surfaces is disposed on the support member for collecting and focusing light passing through the narrow aperture. An optical detector disposed above the light collecting layer detects light passing through the light collecting layer.
摘要:
An optical aperture is fabricated by providing a pressing body and object having a substrate, at least one conical- or pyramidal-shaped tip disposed on the substrate, at least one stopper disposed on the substrate at a vicinity of the tip, and an optical shielding film disposed on at least a portion of each of the stopper and the tip. A surface of the pressing body is then disposed in confronting relation to the object. The pressing body is then displaced to bring the surface of the pressing body in contact with the object so that a force component is directed to a front end of the tip to form an optical aperture at the front end of the tip.