摘要:
A process for producing a grain-oriented electrical steel sheet having an excellent magnetic characteristic, comprising the steps of: heating to a temperature lower than 1280.degree. C. a steel slab comprising 0.025 to 0.075 wt % C, 2.5 to 4.5 wt % Si, 0.010 to 0.060 wt % acid-soluble Al, 0.0030 to 0.0130 wt % N, 0.014 wt % or less (S+0.405 Se), 0.05 to 0.8 wt % Mn, and the balance consisting of Fe and unavoidable impurities; hot-rolling the thus heated slab to form a hot-rolled strip; cold-rolling the hot-rolled strip to form a cold-rolled strip; decarburization-annealing the cold-rolled strip; applying an annealing separator on the strip; final-annealing the strip; measuring a primary-recrystallized grain size in the stage after completion of a primary recrystallization during the decarburization annealing and before completion of a secondary recrystallization during the final annealing; and controlling in that stage the subsequent grain growth of primary-recrystallized grains by an absorption of nitrogen into the steel strip in accordance with the measured grain size.
摘要:
A decarburization-annealed steel strip as an intermediate material for grain-oriented electrical steel strip having good secondary recrystallization and excellent electrical properties is provided by causing a steel strip to possess a micro-structure in which the primary recrystallization grains have an average diameter d of not less than 15 .mu.m and a coefficient of diameter deviation .sigma.* of not more than 0.6.
摘要翻译:通过使钢带具有其中一次再结晶晶粒具有平均直径+ E的微观结构,提供具有良好的二次再结晶和优异的电特性的用于取向电工钢带的中间材料的脱碳退火钢带 ,ovs d + EE不小于15μm,直径偏差系数σ*不大于0.6。
摘要:
The present invention provides a process for manufacturing a double oriented electrical steel sheet having a high flux density by suppressing the growth of the secondary recrystallization of {110} oriented grains from the surface of the steel sheet in the hot-rolling stage or cold-rolling stage, which process comprises subjecting a hot rolled sheet comprised of 0.8-6.7% by weight of Si, 0.008-0.048% by weight of acid soluble Al, 0.010% by weight or less of N, and the balance being Fe and unavoidable impurities to a cold-rolling at a reduction rate of 40-80%, and then subjecting the resulting sheet to another cold-rolling in the direction vertical to the above cold-rolled direction at the reduction rate of 30-70% in the final thickness, followed by the steps of annealing for the primary recrystallization, applying an annealing separator, and applying finishing annealing for the secondary recrystallization and purification of steel, wherein the rolling in the finishing hot-rolling stage is carried out at the accumulated reduction rate of 20% or more under the condition that the friction coefficient between the rolls and the steel sheet is not more than 0.25; and wherein the accumulated reduction rate in the last three passes in the hot-rolling is not more than 80%; and further, wherein material of more than 1/10 of the total thickness is removed from both surfaces of the hot-rolled sheet; or wherein the cold-rolling is carried out using a work roll having a diameter of not less than 150 mm.
摘要:
A process for producing a grain-oriented electrical steel sheet having a high magnetic flux density, comprising the steps of: heating a steel slab comprising 1.8 to 4.8 wt % Si, 0.012 to 0.050 wt % acid-soluble A1, 0.010 wt % or less N, and the balance consisting of Fe and unavoidable impurities, to a temperature for hot rolling; hot-rolling the heated slab to form a hot-rolled strip; cold-rolling the hot-rolled strip to a final product sheet thickness at a final cold rolling reduction of 80% or more by a single step of cold rolling or by two or more steps of cold rolling with an intermediate annealing step inserted therebetween; primary-recrystallization-annealing the cold-rolled strip; final-annealing the primary-recrystallization-annealed strip so that secondary-recrystallized grains substantially completely grow up in a temperature region of from 1000.degree. to 1100.degree. C. and then purification is effected above 1100.degree. C.; and subjecting the primary-recrystallization-annealed steel strip to a nitriding treatment before a secondary recrystallization occurs during the final annealing.
摘要:
In the conventional process for the production of a double-oriented electrical steel sheet, the preparation steps are complicated and the manufacturing cost is very high. Nevertheless, the magnetization characteristic B.sub.10 is lower than 1.85 Tesla and the final sheet thickness cannot be reduced below 0.30 mm. According to the present invention, by strictly controlling the secondary recrystallization temperature and performing a third cold rolling in the same direction as the rolling direction of the first cold rolling, the magnetization characteristic B.sub.10 can be increased above 1.88 Tesla and the final sheet thickness can be reduced to 0.20 mm. Moreover, a double-oriented electrical steel sheet having an excellent shape (flatness) and a much smaller thickness deviation in the longitudinal direction of the product can be produced on an industrial scale. Therefore, this product can be effectively used as a core material of a large-size rotary machine or in a small-size static magneto-electronic device.
摘要:
A grain-oriented electrical steel sheet comprising 2.5-4.5% Si by weight and measuring 0.36-1.00 mm in thickness is imparted with a good core loss value for its thickness by controlling its C content, flux density, grain boundary configuration, and deviation degree of crystal orientation in the grains.
摘要:
A silicon steel slab comprising 0.05 to 0.8% by weight of Mn and up to 0.014% by weight of S+0.405Se is heated at a temperature lower than 1280.degree. C. and hot-rolled under such conditions that the hot rolling-finish temperature is 700.degree. to 1150.degree. C., the cumulative reduction ratio at the final three passes is at least 40%, and the reduction ratio at the final pass is at least 20%, or this silicon steel slab is hot-rolled at a hot rolling-finish temperature of 750.degree. to 1150.degree. C. while adopting the above-mentioned reduction ratio according to need, is maintained at a temperature not lower than 700.degree. C. for at least 1 second, and wound at a winding temperature lower than 700.degree. C. The hot-rolled sheet is subjected to the hot-rolled sheet annealing, finally cold-rolled at a reduction ratio of at least 80%, subjected to the decarburization annealing, and then subjected to the final finish annealing. According to this process, a grain-oriented electrical steel sheet having superior magnetic properties is obtained.
摘要:
An ultrahigh silicon, grain-oriented electrical steel sheet having a magnetic flux density, B.sub.8, of 1.57 or more and a degree of azimuth orientation, R (B.sub.8 /B.sub.s) of 0.87 or more is provided by cold-rolling an ultrahigh silicon steel sheet comprising by weight 0.005 to 0.023% of C, 5 to 7.1% of Si, 0.014% or less of S, 0.013 to 0.055% of acid soluble Al and 0.0095% or less of total N with the balance consisting of Fe and unavoidable impurities at a temperature in the range of from 120.degree. to 380.degree. C. optionally after annealing at a temperature in the range of from 800.degree. to 1100.degree. C., subjecting the cold-rolled sheet to decarburization annealing, coating the annealed sheet with an annealing separator, coiling the coated sheet to prepare a strip coil and subjecting the strip coil to high-temperature finish annealing for secondary recrystallization, the steel sheet being subjected to nitriding during a period from the decarburization annealing to the initiation of secondary recrystallization in the step of high-temperature finish annealing, to increase the nitrogen content.
摘要:
In the present invention, a slab of a silicon steel comprising usual components is hot-rolled while adjusting the hot rolling-finish temperature at 750.degree. to 1150.degree. C. and the cumulative reduction ratio of final three passes to at least 40%, or the above-mentioned silicon steel slab is hot-rolled at the above-mentioned hot rolling-finish temperature, the hot-rolled steel sheet is held at a temperature not lower than 35.degree. C. lower than the finish temperature for at least 1 second, and the steel sheet is wound at a winding temperature lower than 700.degree. C. Successively, the hot-rolled steel sheet is subjected, without annealing of the hot-rolled steel sheet, to cold rolling at a reduction ratio of at least 80%, decarburization annealing, and final finish annealing. According to this process, a grain oriented electrical steel sheet having superior magnetic properties can be prepared.
摘要:
A collision determination device includes a target cell designation unit that designates a target cell for a voxel model which represents the shape of a first object. A determination test point generation unit generates determination test points for the target cell. A spatial curve creation unit creates a spatial curve as the trajectory curve of a determination test point. A curve intersecting determination unit determines whether or not each boundary element of a boundary representation model representing the shape of a second object is intersecting the spatial curve. A distance computation unit computes the closest distance from the spatial curve to the boundary surface of the boundary representation model. A collision determination unit determines, based on the determination result and the computation result, whether there is a possibility of collision between both objects.