Abstract:
An apparatus suitable for at least to: select a cell in a low activity state, and; in the case the selected cell is the same as a serving cell while carrying out a state change to the low activity state, transmit a radio connection resume request to the selected cell; or in the case the selected cell is another cell than the serving cell while carrying out a state change to the low activity state, transmit a radio resume request to the selected cell with information on the location of the user device provided the information on the location has not been transmitted in relation to a cell change carried out in the low activity state; receive, as a response to the radio connection resume request, a radio connection resume request response, and carry out a radio connection resume for the data transmission.
Abstract:
A device communicates with a terminal in association with at least a first other device, using at least two carriers, wherein at least a first carrier towards the terminal is established from the device and at least a second carrier is established towards the terminal from the first other device. The device receives a report indicative of a connection quality of the first carrier, responsive thereto issues a request for handover of the first carrier towards a second device, sends relocation information in relation to the first carrier towards the first other device, and only after sending that relocation information, commands the terminal to perform a handover of the first carrier to the second device. Such device, in cooperation with other devices, accomplishes an optimized handover in terms of a primary component carrier relocation from a serving eNB towards a target eNB, while a secondary component carrier is maintained.
Abstract:
The present invention relates to methods and apparatuses for providing network access, wherein a connection to a core network is established via a wireless access device (20) and a gateway device (42). Connectivity of the wireless access device (20) is restricted to a pre-defined group of core network address of a pool of gateway devices (42) with multi-node connectivity to the core network, and a single address is selected to establish the connection to a one of the gateway devices (42). The gateway device (42) is provided with a relay function for mapping a single input address to a plurality of core network addresses based on a location information of the wireless access device (10) and with at least one co-located decentralized core network functionality.
Abstract:
According to an exemplary embodiment of the invention a network device may be provided which may comprise a receiving unit, a sending unit and an evaluating unit. It may be foreseen that the receiving unit may be adapted to receive a trigger signal for preparing a breakout of a plurality of packets, wherein the plurality of packets may comprise at least one packet from a first source and at least one packet from a second source and wherein the evaluating unit may be adapted to evaluate the trigger signal. Moreover, the evaluation unit may be adapted to evaluate packets from a first source and packets from a second source and the evaluation unit may be adapted to distinguish packets from the first source from packets from the second source.
Abstract:
It is provided a method, comprising configuring a first internet protocol address and a second internet protocol address different from the first internet protocol address for a connection between an apparatus performing the method and a packet data network; assigning the first internet protocol address to a first data path for the connection and to assign the second internet protocol address to a second data path for the connection, wherein at least a part of the first data path belongs to a radio access technology; at least a part of the second data path belongs to the radio access technology; and the part of the first data path is different from the part of the second data path.
Abstract:
A device communicates with a terminal in association with at least a first other device, using at least two carriers, wherein at least a first carrier towards the terminal is established from the device and at least a second carrier is established towards the terminal from the first other device. The device receives a report indicative of a connection quality of the first carrier, responsive thereto issues a request for handover of the first carrier towards a second device, sends relocation information in relation to the first carrier towards the first other device, and only after sending that relocation information, commands the terminal to perform a handover of the first carrier to the second device. Such device, in cooperation with other devices, accomplishes an optimized handover in terms of a primary component carrier relocation from a serving eNB towards a target eNB, while a secondary component carrier is maintained.
Abstract:
According to an example embodiment, A method may include scheduling, by a base station, uplink wireless resources for a user device, receiving, from the user device via the scheduled wireless resources, data associated with at least a first application and a second application, monitoring whether the user device is meeting a first quality of service policy associated with the first application based on the received data associated with the first application, monitoring whether the user device is meeting a second quality of service policy associated with the second application based on the received data associated with the second application, and instructing the user device to adjust an uplink data rate of an application flow associated with the first application based on the monitoring whether the user device is meeting the quality of service policy for the first application.
Abstract:
Improving user experience during handover. Transmitting by a source base station to a target base station a handover request message including a range of QoS profiles, receiving by the source bases station from the target base station a handover request acknowledge message indicating the radio resources or QoS profile selected from the range of QoS profiles, transmitting by the source base station station an identified resource gap between the selected QoS profile of the target base station and the currently used QoS profile in the source base station to an experience management entity.
Abstract:
A device communicates with a terminal in association with at least a first other device, using at least two carriers, wherein at least a first carrier towards the terminal is established from the device and at least a second carrier is established towards the terminal from the first other device. The device receives a report indicative of a connection quality of the first carrier, responsive thereto issues a request for handover of the first carrier towards a second device, sends relocation information in relation to the first carrier towards the first other device, and only after sending that relocation information, commands the terminal to perform a handover of the first carrier to the second device. Such device, in cooperation with other devices, accomplishes an optimized handover in terms of a primary component carrier relocation from a serving eNB towards a target eNB, while a secondary component carrier is maintained.
Abstract:
A device communicates with a terminal in association with at least a first other device, using at least two carriers, wherein at least a first carrier towards the terminal is established from the device and at least a second carrier is established towards the terminal from the first other device. The device receives a report indicative of a connection quality of the first carrier, responsive thereto issues a request for handover of the first carrier towards a second device, sends relocation information in relation to the first carrier towards the first other device, and only after sending that relocation information, commands the terminal to perform a handover of the first carrier to the second device. Such device, in cooperation with other devices, accomplishes an optimized handover in terms of a primary component carrier relocation from a serving eNB towards a target eNB, while a secondary component carrier is maintained.