Abstract:
A mobile radiation inspection apparatus includes a vehicle body, a traveling mechanism, a boom assembly, a first imaging device, and a second imaging device. The boom assembly is mounted on the vehicle body and is configured to switch between an inspection state and a transportation state. The first imaging device includes a first ray source and a first ray detector both mounted on the boom assembly. The first ray source is positioned at the top of an inspection channel. The second imaging device includes a second ray source and a second ray detector. The second ray detector cooperates with the second ray source to detect rays emitted by the second ray source, and the second ray source is positioned on a side surface of the inspection channel. The mobile radiation inspection apparatus implements multi-angle and multi-mode scanning.
Abstract:
The present disclosure discloses a vehicle-mounted type back scattering inspection system. The vehicle-mounted type back scattering inspection system includes a carriage and a back scattering imaging device, the scanning range of the back scattering imaging device is variable. As the scanning range of the back scattering imaging device of the present disclosure is variably set, the inspection range of the back scattering imaging device can be expanded.
Abstract:
A quick vehicle check system comprises a radiation source which produces a first X ray with a first dose and a second X ray with a second dose, wherein the first dose is smaller than the second dose, and the first X ray is used for checking a first part of a checked vehicle and the second X ray is used for checking a second part of the checked vehicle; a first sensor for detecting a set position of the checked vehicle; a second sensor for detecting a passing distance of the checked vehicle; and a control unit coupled with the first sensor and the second sensor, which receives the set position of the checked vehicle from the first sensor and receives the passing distance of the checked vehicle from the second sensor.
Abstract:
A radiation protection device is disclosed in the embodiment of the present invention. The radiation protection device is used for a system which is configured to perform safety inspection of a cargo or a vehicle by a ray. The radiation protection device comprising: at least one container, and a radiation protection part disposed within the container. The radiation protection material may comprise at least one of concrete, sandstone, and water, or the radiation protection part may comprise a steel-lead protection wall or a concrete protection wall. With the radiation protection device according to the embodiment of the present invention, after the container is transported to the site, it can be directly put in place to be capable of shielding rays without needing operation or with only simple operation. The amount of on-site work, construction time, and construction cost are low.
Abstract:
The disclosure provides a multi-power multi-dosage accelerator. The multi-power multi-dosage accelerator comprises an electron gun configured to provide a first voltage of the electron gun and a second voltage of the electron gun, and an accelerating tube configured to generate a first X-ray having a first dosage and first power according to the first voltage of the electron gun and generate a second X-ray having a second dosage and second power according to the second voltage of the electron gun, wherein the first dosage is a dosage which can be accepted by human bodies and is much less than the second dosage, the first X-ray is used for inspecting a first area where a person is located, and the second X-ray is used for inspecting a second area where goods are located.
Abstract:
A sampling probe, an automatic sampling device, and a container detection system are provided. The sampling probe includes: a mounting base; a housing mounted on the mounting base, a first accommodation chamber having an opening being defined in the housing, and an exhaust hole in communication with the first accommodation chamber and outside of the housing being formed in the housing; a coupling portion formed on an outer edge of the opening of the first accommodation chamber and formed to be hermetically coupled with an air outlet of a container; and a suction device mounted on the housing and configured to suck gas in the container into the first accommodation chamber through the air outlet. The sampling probe may collect the odor of toxic and harmful gases/hazardous chemicals inside the container at the air outlet of the container, without destroying the overall structure of the container.
Abstract:
The present disclosure discloses a vehicle-mounted type back scattering inspection system. The back scattering imaging device has a vehicle-mounted working state and a ground working state, and in the vehicle-mounted working state, the back scattering imaging device performs inspection work in the carriage; in the ground working state, the back scattering imaging device performs the inspection work on the ground at the outside of the carriage; and the back scattering imaging device is separately arranged relative to the carriage and is movable between the carriage and the ground to switch between the vehicle-mounted working state and the ground working state.
Abstract:
A collimator and an inspection system having the collimator are disclosed. The collimator includes: a collimator body including a first part and a second part; a collimating slit formed between the first part and the second part and having a first end and a second end in a longitudinal direction thereof; and a shielding member which is movable relative to the collimator body such that both a beam divergent angle and an elevation angle of a ray beam propagating through the collimating slit are varied. An inspection system and an inspection method for scanning a vehicle are further disclosed.
Abstract:
A vehicle detection system includes a transverse detector arm, two vertical detector arms, a radiation source, a plurality of transverse detectors, and a plurality of vertical detectors. The transverse detector arm may be disposed on the ground. Two vertical detector arms are disposed at both ends of the transverse detector arm. The radiation source is located above the transverse detector arm. A plurality of transverse detectors are disposed within the transverse detector arm and are laid along a length direction of the transverse detector arm for receiving ray emitted by the radiation source. The plurality of vertical detectors are symmetrically disposed on the two vertical detector arms, and each of the vertical detectors is disposed towards a center point of the radiation source for receiving ray emitted by the radiation source.
Abstract:
A ray inspection system used to be mounted in a container yard to inspect an object within a container is provided. The ray inspection system includes: a ray generator device configured to emit a ray, a ray receiving device configured to receive the ray, and at least one chamber for receiving the ray generator device and the ray receiving device therein. Each of the at least one chamber is configured to be a standard container or a chamber which has a same shape, a same size and a same structure as a standard container such that the ray inspection system is adapted to be stacked in the container yard.