Neural rendering for inverse graphics generation

    公开(公告)号:US11494976B2

    公开(公告)日:2022-11-08

    申请号:US17193405

    申请日:2021-03-05

    Abstract: Approaches are presented for training an inverse graphics network. An image synthesis network can generate training data for an inverse graphics network. In turn, the inverse graphics network can teach the synthesis network about the physical three-dimensional (3D) controls. Such an approach can provide for accurate 3D reconstruction of objects from 2D images using the trained inverse graphics network, while requiring little annotation of the provided training data. Such an approach can extract and disentangle 3D knowledge learned by generative models by utilizing differentiable renderers, enabling a disentangled generative model to function as a controllable 3D “neural renderer,” complementing traditional graphics renderers.

    EXTRACTING TRIANGULAR 3-D MODELS, MATERIALS, AND LIGHTING FROM IMAGES

    公开(公告)号:US20230140460A1

    公开(公告)日:2023-05-04

    申请号:US17827918

    申请日:2022-05-30

    Abstract: A technique is described for extracting or constructing a three-dimensional (3D) model from multiple two-dimensional (2D) images. In an embodiment, a foreground segmentation mask or depth field may be provided as an additional supervision input with each 2D image. In an embodiment, the foreground segmentation mask or depth field is automatically generated for each 2D image. The constructed 3D model comprises a triangular mesh topology, materials, and environment lighting. The constructed 3D model is represented in a format that can be directly edited and/or rendered by conventional application programs, such as digital content creation (DCC) tools. For example, the constructed 3D model may be represented as a triangular surface mesh (with arbitrary topology), a set of 2D textures representing spatially-varying material parameters, and an environment map. Furthermore, the constructed 3D model may be included in 3D scenes and interacts realistically with other objects.

Patent Agency Ranking