Abstract:
A system performs database management. The system receives a request for a query of a plurality of tables under a join condition on an attribute and determines a uniform mapping that maps a domain of the attribute into a set of numbers, where the domain of the attribute includes all attribute values taken by the attribute in the tables. Then, for a row in a table, the system includes the row into a synopsis of the table if the row includes an attribute value that is mapped by the uniform mapping to a number less than an inclusion probability associated with the table. The system obtains a plurality of synopsis for the tables by repeating the including for all rows in the table and for all tables, and determines, based on the plurality of synopsis, an estimate join size of the tables under the join condition.
Abstract:
Techniques are provided for managing cached data objects in a mixed workload environment. In an embodiment, a database system receives request to access a target data object. The database system determines whether the request to access the target data object is associated with a first type of workload or a second type of workload. In response to determining that the request is associated with the first type of workload, the target data object replaces a least recently used data object in a cache. In response to determining that the request is associated with the second type of workload, the target data object is cached based on an associated access-level value.
Abstract:
A system optimizes a number of shared server processes executing on a processor. The system creates, in a memory, a data array for storing a plurality of performance metric values, each associated with a number of shared server processes. The system selects a value for an optimized number of shared server processes according to a first procedure based on the performance metric, observes a performance metric associated with the selected optimized number, and stores, in the data array, the observed performance metric. The system repeats the selecting, observing and storing until at least a predetermined number of contiguous data values are stored in the data array. The system selects the value for the optimized number according to a second procedure based on a slope of the performance metric. The system observes the performance metric associated with the selected optimized number, and stores, in the data array, the observed performance metric.
Abstract:
A system for optimizing shelf space placement for a product receives decision variables and constraints, and executes a Randomized Search (“RS”) using the decision variables and constraints until an RS solution is below a pre-determined improvement threshold. The system then solves a Mixed-Integer Linear Program (“MILP”) problem using the decision variables and constraints, and using the RS solution as a starting point, to generate a MILP solution. The system repeats the RS executing and MILP solving as long as the MILP solution is not within a predetermined accuracy or does not exceed a predetermined time duration. The system then, based on the final MILP solution, outputs a shelf position and a number of facings for the product.
Abstract:
Techniques are provided for managing cached data objects in a mixed workload environment. In an embodiment, a database system receives request to access a target data object. The database system determines whether the request to access the target data object is associated with a first type of workload or a second type of workload. In response to determining that the request is associated with the first type of workload, the target data object replaces a least recently used data object in a cache. In response to determining that the request is associated with the second type of workload, the target data object is cached based on an associated access-level value.