Abstract:
Techniques are provided for using an intermediate cache between the shared cache of an application and the non-volatile storage of a storage system. The application may be any type of application that uses a storage system to persistently store data. The intermediate cache may be local to the machine upon which the application is executing, or may be implemented within the storage system. In one embodiment where the application is a database server, the database system includes both a DB server-side intermediate cache, and a storage-side intermediate cache. The caching policies used to populate the intermediate cache are intelligent, taking into account factors that may include which object an item belongs to, the item type of the item, a characteristic of the item, or the type of operation in which the item is involved.
Abstract:
Techniques herein store database blocks (DBBs) in byte-addressable persistent memory (PMEM) and prevent tearing without deadlocking or waiting. In an embodiment, a computer hosts a DBMS. A reader process of the DBMS obtains, without locking and from metadata in PMEM, a first memory address for directly accessing a current version, which is a particular version, of a DBB in PMEM. Concurrently and without locking: a) the reader process reads the particular version of the DBB in PMEM, and b) a writer process of the DBMS replaces, in the metadata in PMEM, the first memory address with a second memory address for directly accessing a new version of the DBB in PMEM. In an embodiment, a computer performs without locking: a) storing, in PMEM, a DBB, b) copying into volatile memory, or reading, an image of the DBB, and c) detecting whether the image of the DBB is torn.
Abstract:
In an approach, a database server maintains a container database which comprises: one or more pluggable databases, a root database that stores an undo log for rolling back transactions on the consolidated database, and a redo log for replaying modifications to the container database. The database server restores a particular pluggable with a backup version that corresponds to a first point in time. The database server generates a clone database loaded with a backup version of the root database that corresponds to the first point in time. The database server applies the redo log to recover the particular pluggable database and the clone database to a second point in time that is later than the first point in time. The database server identifies, based on the clone database, one or more active transactions on the particular pluggable database. The database server rolls back the one or more active transactions.
Abstract:
Techniques are provided for managing cached data objects in a mixed workload environment. In an embodiment, a database system receives request to access a target data object. The database system determines whether the request to access the target data object is associated with a first type of workload or a second type of workload. In response to determining that the request is associated with the first type of workload, the target data object replaces a least recently used data object in a cache. In response to determining that the request is associated with the second type of workload, the target data object is cached based on an associated access-level value.
Abstract:
Techniques herein store database blocks (DBBs) in byte-addressable persistent memory (PMEM) and prevent tearing without deadlocking or waiting. In an embodiment, a computer hosts a DBMS. A reader process of the DBMS obtains, without locking and from metadata in PMEM, a first memory address for directly accessing a current version, which is a particular version, of a DBB in PMEM. Concurrently and without locking: a) the reader process reads the particular version of the DBB in PMEM, and b) a writer process of the DBMS replaces, in the metadata in PMEM, the first memory address with a second memory address for directly accessing a new version of the DBB in PMEM. In an embodiment, a computer performs without locking: a) storing, in PMEM, a DBB, b) copying into volatile memory, or reading, an image of the DBB, and c) detecting whether the image of the DBB is torn.
Abstract:
Techniques are provided for using an intermediate cache between the shared cache of an application and the non-volatile storage of a storage system. The application may be any type of application that uses a storage system to persistently store data. The intermediate cache may be local to the machine upon which the application is executing, or may be implemented within the storage system. In one embodiment where the application is a database server, the database system includes both a DB server-side intermediate cache, and a storage-side intermediate cache. The caching policies used to populate the intermediate cache are intelligent, taking into account factors that may include which object an item belongs to, the item type of the item, a characteristic of the item, or the type of operation in which the item is involved.
Abstract:
In an approach, a database server maintains a container database which comprises: one or more pluggable databases, a root database that stores an undo log for rolling back transactions on the consolidated database, and a redo log for replaying modifications to the container database. The database server restores a particular pluggable with a backup version that corresponds to a first point in time. The database server generates a clone database loaded with a backup version of the root database that corresponds to the first point in time. The database server applies the redo log to recover the particular pluggable database and the clone database to a second point in time that is later than the first point in time. The database server identifies, based on the clone database, one or more active transactions on the particular pluggable database. The database server rolls back the one or more active transactions.
Abstract:
Techniques are provided for managing cached data objects in a mixed workload environment. In an embodiment, a database system receives request to access a target data object. The database system determines whether the request to access the target data object is associated with a first type of workload or a second type of workload. In response to determining that the request is associated with the first type of workload, the target data object replaces a least recently used data object in a cache. In response to determining that the request is associated with the second type of workload, the target data object is cached based on an associated access-level value.