Abstract:
A light fixture, preferably for stage, is provided with a source assembly configured to generate a light beam mainly along an emission direction; and with at least a first optical assembly arranged downstream of the source assembly along the emission direction; the first optical assembly comprising at least one mixing device configured to mix the light beam passing through it; the mixing device comprising an optical mixing element and a moving device configured to move the optical mixing element between a position of non-interference with the light beam emitted by the source assembly and at least one position of interference with the light beam emitted by the source assembly.
Abstract:
A light module comprises first excitation radiation source emitting first excitation radiation having a first optical property value, second excitation radiation source emitting second excitation radiation having a second optical property value which differs from the first value. At irradiation region (P), a phosphor and an optical element, which is at least partly reflective with maintenance of the optical property, are arranged alternately or simultaneously. A first dichroic mirror is arranged between the first excitation radiation source and irradiation region (P), and a second dichroic mirror is arranged between the second excitation radiation source and irradiation region (P). The first optical path proceeding from the first excitation radiation source successively comprises the first dichroic mirror, irradiation region (P) and the second dichroic mirror. The second optical path proceeding from the second excitation radiation source successively comprises the second dichroic mirror, irradiation region (P)and the first dichroic mirror.
Abstract:
A lamellar arrangement for shielding radiation acting on a fluid which flows through an interior of a device, comprises two or more lamellae aligned substantially parallel to one another and respectively defining an intermediate space between them, wherein at least one subset of the lamellae is respectively subdivided into at least three lamella sections comprising a first lamella section, a second lamella section next to the first lamella section and a third lamella section next to the second lamella section. The first lamella section and the second lamella section in this case enclose a first angle between them, and the second lamella section and the third lamella section enclose a second angle between them. The first angle has a magnitude in a range of from 20° to 45° and the second angle has a magnitude in a range of from 20° to 45°.
Abstract:
The invention relates to a device for irradiating a liquid with electromagnetic radiation, in particular for sterilizing an in particular flowing liquid by means of UV radiation (UV reactor), comprising a container having an inlet for receiving the liquid and having an outlet for releasing the liquid from the container, wherein within the container a variable or adjustable irradiation zone is provided for irradiating the liquid with electromagnetic radiation, in particular UV radiation, emitted by a radiation source. In the irradiation zone the liquid is configured in the form of a liquid layer having the layer thickness which extends between the underside of the container and a gas bubble expanding above the liquid layer.
Abstract:
A device for sterilising a fluid flowing therethrough by comprises a container having an inlet for receiving the fluid and an outlet for discharging the fluid, a variable or adjustable irradiation zone for irradiating the fluid with UV radiation. The irradiation zone including a gap which extends between two oppositely arranged walls. The distance between the walls, and thus the gap size of the gap, can be changed by at least one wall being movable. For example, the wall is a wall of a displaceable body that is located inside the container or projecting into the container. By adjusting the distance between the walls in the region of the gap, and thus the layer thickness of the fluid flowing through the gap, the efficiency of the operation of the device is optimised with different scattering and absorption properties of the fluid.
Abstract:
In various embodiments, an optical arrangement is provided. The optical arrangement includes a carrier plate, on which at least one light source is arranged, at least one optical element for directing the radiation of the at least one light source, and at least one sleeve, which is connected to the light source and is intended to hold the optical element. At least one of the sleeve is configured in such a way that the light source and the optical element are respectively arranged therein at least in sections, or the optical element can be positioned exactly with respect to the light source.
Abstract:
An optical arrangement for disinfection in apparatuses operating with air or a liquid comprises at least one radiation source or at least one group of radiation sources, which emits or jointly emit radiation in the ultraviolet wavelength range, at least one beam collecting optical unit, which collects the radiation emitted by the radiation source or the group of radiation sources, a number of beam delivering optical units, each configured to receive the radiation collected by the at least one beam collecting optical unit, and also a number of effect zones spatially separated from one another, into which the radiation delivered via the beam delivering optical units is emitted in order to bring about a disinfecting effect.
Abstract:
A lighting device comprising a pump laser matrix (2) and a phosphor arrangement. The pump laser matrix (2) is configured to emit pump radiation (7) having a controllable pump radiation power distribution for the irradiation of the phosphor arrangement (4). The phosphor arrangement (4) comprises at least two different phosphors (R, Y, G) which can be irradiated with the pump radiation (7) and re-emit said pump radiation in a manner such that it is at least partly and in each case differently wavelength-converted. The lighting device (1) is configured to generate, with the aid of the pump laser matrix (2), a controllable distribution of the surface power density of the pump radiation on the phosphors (R, Y, G) of the phosphor arrangement (4).