Abstract:
A radiation emitting semiconductor chip is disclosed. In an embodiment, a radiation-emitting semiconductor chip includes a carrier including a first main surface and a second main surface opposite to the first main surface, an n-doped layer and a p-doped layer forming a pn-junction and a vertical region starting from the first main surface and running parallel to side faces of the carrier, wherein the vertical region is n-doped, p-doped or electrically insulating, and wherein the vertical region extends within a boundary region of the carrier and completely encloses a central volume region of the carrier, an epitaxial semiconductor layer sequence having an active zone configured to generate electromagnetic radiation during operation, the epitaxial semiconductor layer sequence being located at the first main surface of the carrier and two electrical contacts disposed on a front side of the semiconductor chip.
Abstract:
A method of operating an optoelectronic proximity sensor including a radiation-emitting component, a radiation-detecting component and a control unit includes: operating the radiation-emitting component with a pulsed current, wherein the pulsed current of the radiation-emitting component has an on time and an off time during a measurement period, and causing the control unit to evaluate a detector signal of the radiation-detecting component during the on time and ending the on time if the detector signal exceeds a threshold value, wherein the ratio of the on time to the measurement period is less than 1/10.
Abstract:
A method of operating an optoelectronic proximity sensor including a radiation-emitting component, a radiation-detecting component and a control unit includes: operating the radiation-emitting component with a pulsed current, wherein the pulsed current of the radiation-emitting component has an on time and an off time during a measurement period, and causing the control unit to evaluate a detector signal of the radiation-detecting component during the on time and ending the on time if the detector signal exceeds a threshold value, wherein the ratio of the on time to the measurement period is less than 1/10.
Abstract:
A radiation emitting semiconductor chip is disclosed. In an embodiment, a radiation-emitting semiconductor chip includes a carrier including a first main surface and a second main surface opposite to the first main surface, an n-doped layer and a p-doped layer forming a pn-junction and a vertical region starting from the first main surface and running parallel to side faces of the carrier, wherein the vertical region is n-doped, p-doped or electrically insulating, and wherein the vertical region extends within a boundary region of the carrier and completely encloses a central volume region of the carrier, an epitaxial semiconductor layer sequence having an active zone configured to generate electromagnetic radiation during operation, the epitaxial semiconductor layer sequence being located at the first main surface of the carrier and two electrical contacts disposed on a front side of the semiconductor chip.