Abstract:
There is provided a method to fabricate optical taps and waveguide devices in photonic crystal fibers and other fibers with hollow structures. The method involves a preparation step, where the hollow holes inside the fiber are collapsed or partially modified locally; and a waveguide fabrication step, where a femtosecond laser is focused inside the fiber and used to produce optical waveguides that interact in the region that was previously modified in the preparation step.
Abstract:
An optical setup to detect fluorescence in samples is described, taking advantage of the geometry of sample vials to optimize both the excitation of fluorescence within said sample vials and the detection of fluorescence from the sample as it is emitted. Said optical geometry can be adapted for different sample containers and can be used in a variety of optical setup, both in single sample test systems as well as sample arrays.
Abstract:
There is provided a system for measuring temperature and strain simultaneously utilizing Brillouin Scattering within an optical fiber. The system has a cladding, a first optical core within the cladding and a second optical core within the cladding and having a different refractive index profile and/or composition than the first core. Means to couple light into and out of said individual optical cores and/or from one optical core to the other within the fiber is provided along with means for calculating strain and temperature characteristics based on measured Brillouin frequencies for said optical cores.
Abstract:
There is provided a system for measuring temperature and strain simultaneously utilizing Brillouin Scattering within an optical fiber. The system has a cladding, a first optical core within the cladding and a second optical core within the cladding and having a different refractive index profile and/or composition than the first core. Means to couple light into and out of said individual optical cores and/or from one optical core to the other within the fiber is provided along with means for calculating strain and temperature characteristics based on measured Brillouin frequencies for said optical cores.
Abstract:
There is provided a system for measuring temperature and strain simultaneously utilizing Brillouin Scattering within an optical fiber. The system has a cladding, a first optical core within the cladding and a second optical core within the cladding and having a different refractive index profile and/or composition than the first core. Means to couple light into and out of said individual optical cores and/or from one optical core to the other within the fiber is provided along with means for calculating strain and temperature characteristics based on measured Brillouin frequencies for said optical cores.
Abstract:
A device including an optical tap and waveguide in the core and cladding of an optical fiber together with a glass ferrule that is angle polished to provide a reflection surface (with or without total internal reflection) that produces a reflection of the light tapped from the optical fiber to reach the bottom of the glass ferrule and propagate in a direction that is perpendicular to (or at least different than the direction of propagation close to) the axis of the optical fiber. The fiber waveguide may be created using an ultrafast fabrication method and the glass ferrule can itself be modified by the same ultrafast laser technique to further manipulate the light traveling inside.