摘要:
A method for detecting pressure disturbances in a formation accessible by a borehole while performing an operation is disclosed. The method includes positioning a tool within the borehole, positioning a first probe of the tool at a first location, positioning a second probe of the tool at a second location remote from the first location to obtain a pressure reading, performing an operation with the first probe, detecting the presence of a single phase fluid within the tool, detecting a pressure disturbance within the formation with the second probe, and identifying a second phase fluid based on the detection of the pressure disturbance. Other methods and systems for detecting pressure disturbances in the formation are further disclosed.
摘要:
A method for detecting pressure disturbances in a formation accessible by a borehole while performing an operation includes positioning a tool within the borehole, positioning a first probe of the tool at a first location, positioning a second probe of the tool at a second location remote from the first location to obtain a pressure reading, performing an operation with the first probe, detecting the presence of a first phase fluid within the tool, detecting a pressure disturbance within the formation with the second probe, and identifying a second phase fluid based on the detection of the pressure disturbance. Other methods and systems for detecting pressure disturbances in the formation are further shown and described.
摘要:
A technique is described for interpretation of IPTT tests. In one implementation, the technique may be configured or designed to standardize the complete interpretation procedure of IPTT in a heterogeneous reservoir, using if available, modern wireline logs (such as, for example, nuclear magnetic resonance and imaging), dynamic data from wireline formation testers and/or any other relevant information (such as, for example, geological description, core data and local knowledge) as constraints on the interpretation. Additionally, an iterative method may be used to define formation layering. An advanced regression technology may also be used to obtain optimized horizontal and vertical permeabilities of reservoir layers. Further a graphical user interface (GUI) based IPTT workflow technique of the present invention provides an integrated user-friendly interpretation platform for analyzing formation testing pressures and flow rate measurements in order to estimate the values and associated uncertainties of local characteristics of a hydrocarbon reservoir such as, for example, local permeability, local reservoir pressure, local compressibility, etc.
摘要:
A technique is described for interpretation of IPTT tests. In one implementation, the technique may be configured or designed to standardize the complete interpretation procedure of IPTT in a heterogeneous reservoir, using if available, modern wireline logs (such as, for example, nuclear magnetic resonance and imaging), dynamic data from wireline formation testers and/or any other relevant information (such as, for example, geological description, core data and local knowledge) as constraints on the interpretation. Additionally, an iterative method may be used to define formation layering. An advanced regression technology may also be used to obtain optimized horizontal and vertical permeabilities of reservoir layers. Further a graphical user interface (GUI) based IPTT workflow technique of the present invention provides an integrated user-friendly interpretation platform for analyzing formation testing pressures and flow rate measurements in order to estimate the values and associated uncertainties of local characteristics of a hydrocarbon reservoir such as, for example, local permeability, local reservoir pressure, local compressibility, etc.
摘要:
A method for determining rock and fluid properties of a fluid-containing subsurface geological formation is provided. First, a low resolution model of the geological formation is initially created from a lumped average parameter estimation derived from at least fluid pressure transient data obtained along a linear wellbore that traverses the formation. Next, the model parameters are updated using grid-based parameter estimation in which the low resolution pressure transient data are combined with data from at least one of seismic data, formation logs, and basic geological structural information surrounding the linear wellbore. Depending on the data available, this process may be carried out in a sequential manner by obtaining and combining additional dynamic data at selected areas. Through this process, multiple realizations of the properties of the geological formation (within the geological structural model) may be created based from the pressure-data conditioned geostatistics i.e. geostatistics that have been informed by data from both static and dynamic sources. Finally, the dynamic simulation of models should be compared to the results of the lumped average parameter estimation to provide a final calibration of the created models.
摘要:
An example instrumented formation tester for injecting fluids and monitoring of fluids described herein includes a downhole tool which can be deployed in a wellbore via a wireline or a drill string. The downhole tool may facilitate the injection of fluids into an underground formation, and the monitoring of the directions in which the injected fluids flow in the formation in an open hole environment. In particular, the downhole tool may be configured for removing the mud cake from a portion of the wellbore wall for facilitating a fluid communication with the formation to be tested.
摘要:
A method and system for well test design and interpretation, comprising a testing manager system, which includes at least one of testing hardware and gauge metrology; a geological model coupled to the testing manager system; a dynamic and static engineering data acquisition system coupled to the geological model; and a reservoir modeling system coupled to the dynamic and static engineering data acquisition system to generate a reservoir model. Also provided is a method and computer program for controlling, driving, and enabling the devices, systems, and subsystems presented herein through interaction with a human user, or the like.
摘要:
A system for making pressure measurements in a formation surrounding a wellbore includes a sensor which, in use, is positioned into direct pressure communication with the formation from a predetermined location in the wellbore, and a means for isolating the sensor, when in use, from pressure effects arising from the wellbore.
摘要:
A borehole tool having adjacently located fluid injection/withdrawal apparatus and an electromagnetic measurement apparatus is provided. The electromagnetic measurement apparatus can be an imaging apparatus for helping set the tool in desired locations for permeability testing via fluid injection or withdrawal. In a second mode, during fluid injection or withdrawal, and if desired, before and/or after injection or withdrawal, a plurality of electromagnetic measurements (images) are made. Based on the electromagnetic and hydraulic measurements, and a model which interrelates the measurements, determinations are made as to various characteristics of the formation, including effective permeabilities. Related methods for utilizing the tool and for treating the data in an integrated fashion are also set forth.
摘要:
An example instrumented formation tester for injecting fluids and monitoring of fluids described herein includes a downhole tool which can be deployed in a wellbore via a wireline or a drill string. The downhole tool may facilitate the injection of fluids into an underground formation, and the monitoring of the directions in which the injected fluids flow in the formation in an open hole environment. In particular, the downhole tool may be configured for removing the mud cake from a portion of the wellbore wall for facilitating a fluid communication with the formation to be tested.