摘要:
A method for extracting geometrical data from a 2-D digital image of the spine, comprising steps for determining spine outlines, endplates and corners wherein: digitizing the spine center line and end points; constructing a 2-D image band, referred to as Rubber-Band, whose center line is a spline representing the spine center line, and unfolding said Rubber-Band for constructing a 2-D Rectangular-Band; processing the 2-D Rectangular-Band image data in order to estimate best paths going through selected points for determining the spine outlines, then the endplates based on the found outline data and the corners at the intersection of the outlines and endplates.
摘要:
The invention relates to an image processing method of extracting geometrical data of the spine, for extracting the left and right pedicle landmarks of each spine vertebra, comprising steps of: acquiring image data of a 2-D frontal image of the spine; associating spine States to vertebra positions along the spine and estimating locations of left and right pedicle landmark Candidates in each State; defining a State Cost for forming Couples of left and right pedicle landmark Candidates (PL and PR); estimating sets of Best Couple Candidates, in each State, from the lowest State Costs; defining a Path Cost to go from one State to the next State; selecting a pedicle landmark Couple in each spine State (V) among the Best Couple Candidates from the minimum Path Costs, and localizing the left and right pedicle landmarks of each spine vertebra from said selected pedicle landmark Couple. The invention also relates to a system, a medical apparatus and a program product for carrying out the method.Application: Medical Imaging x-ray Medical System and apparatus; Program Product for Medical Imaging.
摘要:
A medical viewing system including an imaging means (2,3) and image data processing means (5) is arranged to facilitate production of different images of a feature of interest such that the pose of the feature of interest is comparable in the different images. The image data processing means (5) estimates the pose of the feature of interest in a second image relative to the pose thereof in a first image, typically generated at a different time, and applies an affine transformation, for example to the second image, so as to produce a transformed second image in which the feature of interest has substantially the same pose as in the first image. The image data may also be processed so as to normalize the intensity characteristics of the images to be compared. Gross differences in pose can be eliminated by processing the image data so as to generate control data indicating how to set up the imaging apparatus to produce an image having the feature of interest oriented substantially in a desired pose.
摘要:
A medical examination apparatus including an imaging means (2,3), a viewing system (4), wherein image data processing means (5) is arranged to facilitate production of different images of a feature of interest such that the pose of the feature is comparable in the different images. The image data processing means (5) estimates the pose of the anatomical feature in a first image generated by the imaging means, produces imaging means control data indicative of the desired imaging geometry for controlling one or more parameters of the imaging means (2,3) for producing a further image having the feature of interest in the estimated pose, and outputs the produced imaging means control data. The output control data may be output in a viewable form and/or output directly to the imaging means (2,3) so as automatically to control the parameters thereof. The output control data can also control the imaging means so as to produce an image having desired intensity characteristics.
摘要:
The invention relates to a method for segmentation of a three-dimensional structure in a three-dimensional data set, especially a medical data set. The method uses a three-dimensional deformable model, wherein the surface of the model consists of a net of polygonal meshes. The meshes are split into groups, and a feature term is assigned to each group. After the model has been placed over the structure of interest, the deformable model is recalculated in consideration of the feature terms of each group.
摘要:
The invention relates to a method for segmentation of a three-dimensional structure in a three-dimensional data set, especially a medical data set. The method uses a three-dimensional deformable model, wherein the surface of the model consists of a net of polygonal meshes. The meshes are split into groups, and a feature term is assigned to each group. After the model has been placed over the structure of interest, the deformable model is recalculated in consideration of the feature terms of each group.
摘要:
Method of image processing, the method comprises providing a sequence (2) of images (F) which have contrast modulation (100) along said sequence (2); providing a reference frequency (fm, 10) related to said contrast modulations (100) along said sequence (2); and filtering said sequence of images depending on said reference frequency (fm, 10). According to an embodiment, a windowed harmonic filtering is applied to the sequence of input images to extract fundamental in-phase (122) and quadrature (124) components at a heart beat frequency (fm). The resultant time-signal phase is displayed (34) as image sequence.
摘要:
A system for visualizing a myocardium represented by a cardiac image comprises a resampling means and a visualizing means. The resampling means re-samples the intensity levels at sampling points on a plurality of curved surfaces, each curved surface enclosing at least part of a heart cavity and zero or more of the plurality of curved surfaces and being enclosed by the remaining curved surfaces of the plurality of curved surfaces, the plurality of curved surfaces together covering a hollow region in the cardiac image, the hollow region comprising the outer cavity walls of a group of at least one heart cavity. The visualizing means is arranged for visualizing at least part of at least one of the plurality of curved surfaces, using resampled intensity levels obtained from the resampling means. The group of at least one heart cavity may be the left atrium alone. It may also be the complete heart.
摘要:
An image processing system having means of automatic adaptation of 3-D surface Model to image features, for Model-based image segmentation, comprising: dynamic adaptation means for adapting the Model resolution to image features including locally setting higher resolution when reliable image features are found and setting lower resolution in the opposite case. This system comprises estimation means for estimating a feature confidence parameter for each image feature. The model resolution is locally adapted according to said parameter. The feature confidence parameter depends on the feature distance and on the estimation of quality of this feature including estimation of noise. The large distances and the noisy, although close features are penalized. The resolution of the Model is decreased in absence of confidence and is gradually increased with the rise of feature confidence.
摘要:
An image processing system, for correlating shapes in multi-dimensional images (m-D), comprising image data processing means for estimating a similarity measure including computing means for: estimating two image signals (f(x), g(y)) representing shapes defined in respective windows (W1, W2) in two multi-dimensional images; using a Hermite Transform (HT) applied to both said image signals for performing an evaluation of two first sets of scalar valued Hermite coefficients (fI, gI, FI, GI), from which a combination yields a transformed set of scalar valued Hermite coefficients {KI}; applying the inverse Hermite Transform (HT-1) to the transformed set of scalar valued Hermite coefficients {KI} to achieve the computation of a windowed correlation function (K(v)); and estimating the maximum of said windowed correlation function as the wanted similarity measure to correlate the shapes; and means for displaying the correlated shapes and/or processed images. This system has means for applying rotation, translation and scale change on the scalar valued Hermite coefficients of the image signals and the correlation function, instead of on the images. This system can correlate very complex shapes having parts that locally show different deformations from the global complex shapes. The invention also relates to an examination apparatus coupled to this image processing system.