Abstract:
A tire comprising a tread portion designed to be worn off during the life of the tire having a radial thickness T, an outer edge and an inner edge, the axial distance between the outer edge and the inner edge defining the axial width L of the tread, the tread comprising four adjacent portions made of a four rubber compounds, wherein the rubber compounds making up the first and third portions are predominantly filled with carbon black filler, wherein the rubber compounds making up the second and fourth portion are predominantly filled with non carbon black filler, wherein the rubber compounds making up the first and third portions have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of the rubber compounds making up the second and fourth portion, and wherein the axial width of the first portion decreases and the axial width of the second portion increases as a function of the distance from the rolling surface of the tread when unworn.
Abstract:
A tire comprising a tread portion designed to be worn off during the life of the tire having a radial thickness T, an outer edge and an inner edge, the axial distance between the outer edge and the inner edge defining the axial width L of the tread, the tread comprising four adjacent portions made of a four rubber compounds, wherein the rubber compounds making up the first and third portions are predominantly filled with carbon black filler, wherein the rubber compounds making up the second and fourth portion are predominantly filled with non carbon black filler, wherein the rubber compounds making up the first and third portions have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of the rubber compounds making up the second and fourth portion, and wherein the axial width of the first portion decreases and the axial width of the second portion increases as a function of the distance from the rolling surface of the tread when unworn.
Abstract:
Tire (10) comprising a tread (40) having a mean radial height HB, an outer edge (45) and an inner edge (46), the axial distance between the outer edge (45) and the inner edge (46) defining the axial width L of the tread, the tread comprising a first portion (411) made of a first rubber compound, extending from the outer edge (45) to a first axial position at an axial distance from the outer edge of between 20% and 40% of the axial width; a second portion (412) made of a second rubber compound, extending from said first axial position to a second axial position at an axial distance from the outer edge of between 50% and 60% of the axial width L; a third portion (413) made of a third rubber compound extending from said second axial position to a third axial position at an axial distance from the outer edge of between 80% and 90% of the axial width L; and a fourth portion (414) made of a fourth rubber compound, extending from said third axial position to the inner edge (46) of the tread, wherein said first and third rubber compounds are predominantly filled with carbon black filler, wherein said second and fourth rubber compounds are predominantly filled with non carbon black filler, and wherein said first rubber compound and said third rubber compound have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of said second rubber compound and said fourth rubber compound.
Abstract:
Tire (10) comprising a tread (40) having a mean radial height HB, an outer edge (45) and an inner edge (46), the axial distance between the outer edge (45) and the inner edge (46) defining the axial width L of the tread, the tread comprising a first portion (411) made of a first rubber compound, extending from the outer edge (45) to a first axial position at an axial distance from the outer edge of between 20% and 40% of the axial width; a second portion (412) made of a second rubber compound, extending from said first axial position to a second axial position at an axial distance from the outer edge of between 50% and 60% of the axial width L; a third portion (413) made of a third rubber compound extending from said second axial position to a third axial position at an axial distance from the outer edge of between 80% and 90% of the axial width L; and a fourth portion (414) made of a fourth rubber compound, extending from said third axial position to the inner edge (46) of the tread, wherein said first and third rubber compounds are predominantly filled with carbon black filler, wherein said second and fourth rubber compounds are predominantly filled with non carbon black filler, and wherein said first rubber compound and said third rubber compound have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of said second rubber compound and said fourth rubber compound.
Abstract:
A tire and a method for forming a tire tread are disclosed. The tire includes a tread defining an inferior tread profile and a superior tread profile, the superior tread profile having a generally continuous curvature between an edge of contact and a top center point. The superior tread profile includes a plurality of control points and a plurality of splines. Each of the plurality of splines extends between at least two of the plurality of control points. Curvatures of adjacent splines are generally equal at each of the plurality of control points.
Abstract:
A tire and a method for forming a tire tread are disclosed. The tire includes a tread defining an inferior tread profile and a superior tread profile, the superior tread profile having a generally continuous curvature between an edge of contact and a top center point. The superior tread profile includes a plurality of control points and a plurality of splines. Each of the plurality of splines extends between at least two of the plurality of control points. Curvatures of adjacent splines are generally equal at each of the plurality of control points.