Abstract:
A pneumatic tire in which an inner liner including a film mainly made of thermoplastic resin is attached to an inside of the tire via a tie rubber sheet, on an inner side of a carcass layer, and which has a lap-splice portion where end portions of the film in a tire circumferential direction overlap each other in a tire widthwise direction with tie rubber therebetween. A section of the film on a tire cavity side in the lap-splice portion has a portion where the film is thin over part or entirety of the width in the tire widthwise direction before the lap-splice portion, or a film thickness in the lap-splice portion is smaller than a film thickness in a portion other than the lap-splice portion. Thus, the pneumatic tire has no crack developing around the lap-splice portion of an inner liner layer after running, and has excellent durability.
Abstract:
A method of mounting an object on a tire includes providing a tire having a sidewall, wherein the sidewall includes a mounting portion configured to receive an object. The method further includes mounting the object on the mounting portion of the sidewall, such that the object is visible without extending outwardly beyond the mounting portion.
Abstract:
A tyre is described that includes a casing defining a cavity and equipped to receive an object, such as an electronic circuit, for example, through use of a two-part attachment, such as a touch-close attachment, of which a first part is fixed to a wall of the casing and a second part can be joined to the first part when placed in contact with the first part to keep the object on the casing in a service position. The first part of the attachment includes connection elements that are an integral part of the wall of the casing of the tyre. The connection elements allow these two parts to have freedom to move relative to each other, thereby limiting the transmission of stresses, which affect the wall of the tyre, to the object. The connection elements may be loops of flexible thread formed by the extremities of turns of a coiled thread integrated into the wall of the tyre during the tyre's manufacture.
Abstract:
An air maintenance tire and pump assembly comprising: a tire having two spaced inextensible beads; a ground contacting tread portion; a pair of individual sidewalls extending radially inward from the axial outer edges of said tread portion to join the respective beads; a supporting carcass for the tread portion and sidewalls; an innerliner disposed radially inward of the carcass, the innerliner having a innerliner surface facing an interior cavity of the tire; an elongate substantially annular air passageway enclosed within a bending region of the tire, the air passageway operatively closing and opening segment by segment as the bending region of the tire passes through a rolling tire footprint to pump air along the air passageway; an air inlet port assembly coupled to and in air flow communication with the air passageway at an inlet air passageway junction, the air inlet port assembly operable to channel inlet air from outside of the tire into the air passageway, the air inlet port assembly comprising a regulator assembly, the regulator assembly having a mounting surface; the mounting surface adhered to the innerliner surface with a silicone adhesive.
Abstract:
A self-inflating tire assembly includes a first and second air tube mounted within a tire wherein each air tube defines an air passageway. Each air tube is composed of a flexible material operative to allow an air tube segment opposite a tire footprint to flatten, closing the passageway, and resiliently unflatten into an original configuration. Each air tube is sequentially flattened by the tire footprint in a direction opposite to a tire direction of rotation to pump air along the passageway to an outlet device for direction into the tire cavity. Each air tube has an inlet end that are joined together by an inlet device. Each air tube has an outlet end that are joined together by an outlet device The inlet device is preferably positioned 180 degrees opposite the outlet device. The inlet device allows air to transfer from one air tube to the other air tube. The outlet device allows air to transfer from one air tube to the tire cavity.
Abstract:
In an assembly of a pneumatic tire and a rim, in which a tire cavity is formed between the pneumatic tire and the rim by mounting the pneumatic tire on the rim, a noise suppressing body extending in a circumferential direction is disposed inside the tire cavity. The noise suppressing body includes a first sound absorbing material layer arranged apart from an inner surface of a tire tread part through a cavity and a second sound absorbing material layer disposed at the rim side of the first sound absorbing material layer and having lower air permeability than the first sound absorbing material layer.
Abstract:
A self-inflating tire assembly comprises a tire having a tread region, first and second sidewalls, and first and second bead regions, wherein the first and second sidewalls extend respectively from the first and second bead regions to the tread region, wherein the tread region and the first and second sidewalls enclose an annular tire cavity. Further, the assembly comprises an air passageway connected to one of the sidewalls and extending essentially in a circumferential direction of the tire for pumping air from outside of the tire into the tire cavity, wherein the air passageway has an air passageway inlet for receiving air from outside of the tire and an air passageway outlet for releasing air into the tire cavity. Moreover, the assembly comprises an air pressure regulator having an air pressure regulation chamber, a connector end, and a channel fluidly connecting the pressure regulation chamber with the connector end, wherein the air pressure regulator is detachably connected to one of the air passageway inlet and the air passageway outlet via the connector end for allowing fluid communication between channel and the air passageway via the connector end. In addition, the invention relates to a pressure regulator kit for regulating the pressure of a tire, the kit comprising a plurality of air pressure regulators.
Abstract:
Tire (10) comprising a tread (40) having a mean radial height HB, an outer edge (45) and an inner edge (46), the axial distance between the outer edge (45) and the inner edge (46) defining the axial width L of the tread, the tread comprising a first portion (411) made of a first rubber compound, extending from the outer edge (45) to a first axial position at an axial distance from the outer edge of between 20% and 40% of the axial width; a second portion (412) made of a second rubber compound, extending from said first axial position to a second axial position at an axial distance from the outer edge of between 50% and 60% of the axial width L; a third portion (413) made of a third rubber compound extending from said second axial position to a third axial position at an axial distance from the outer edge of between 80% and 90% of the axial width L; and a fourth portion (414) made of a fourth rubber compound, extending from said third axial position to the inner edge (46) of the tread, wherein said first and third rubber compounds are predominantly filled with carbon black filler, wherein said second and fourth rubber compounds are predominantly filled with non carbon black filler, and wherein said first rubber compound and said third rubber compound have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of said second rubber compound and said fourth rubber compound.
Abstract:
An air maintenance tire assembly and method of operation includes a pressurized air supply assembly for supplying pressurized air to a tire cavity through an elongate outward projecting, valve stem passageway. An elongate centrally disposed shaft within the valve stem reciprocally moves axially in the valve stem internal air passageway between a passageway-opening axial position and a passageway-closing axial position. A pressure regulator is provided to move the elongate shaft axially between the passageway-opening and passageway-closing positions responsive to a detected air pressure level within the tire cavity.
Abstract:
A product such as a tire includes a radio frequency identification device (RFID) assembly located along an outer sidewalk The RFID assembly has a thin, flexible, substantially planar, elongated non-conductive rubber, elastomer, or polymer substrate. First and second thin, flexible, elongated, substantially planar first antenna portions formed at least in part of the same conductive rubber, elastomer, or polymer are provided on the substrate. Opposite first and second ends of the first antenna portion have different first and second widths. A chip has opposite first and second ends in operative electrical connection with the first and second antenna portions, respectively, and is located between the outer sidewall and the substrate.