摘要:
This invention describes a means by which performance characteristics of capacitors can be improved. This is achieved by reducing the temperature, preferably but not exclusively to cryogenic temperatures below 100 K. This is based on the observation that the dielectric strength, dielectric losses and plate losses in many capacitors, such as film capacitors, improve as the temperature is decreased. A cryogenic capacitor bank is also described, which exhibits energy densities up to four times those of conventional, room-temperature capacitor banks. Cryogenic capacitors can be combined with cryogenically operated semiconductors or with superconductors in such a way as to reduce the size, weight, and losses of a complete system.
摘要:
An energy efficient data center incorporating superconducting power transmission cables coupled with cryogenically cooled semiconductor inverters and converters, used to supply power to cryogenically operated or room-temperature computers and servers. Other options and features include a lighting system whose performance is enhanced by the cold temperatures, fiber optic connections operated at cryogenic temperatures, integrated renewable energy power sources, advanced energy storage technologies, cryogenically operated computers, and a number of other cryogenic hardware. The operating temperature of the cryogenic components can be anywhere in the range between 0 K and 200 K, with other components operating above 200 K.
摘要:
Switching losses and conduction losses are isolated by networks which are partially cryogenic and partially at room temperature. Switching losses are independent of temperature. Advantageously the switching losses are taken in a snubber network at room temperature and conduction losses are incurred at cryogenic temperatures, where majority carrier devices like MOSFETs operate with ultra low on-state resistance and corresponding low conduction losses. Low loss leads carry current efficiently from the cryogenic environment to room temperature without adversely affecting refrigeration. Switch and snubber network may both operate cryogenically.
摘要:
An energy efficient data center incorporating superconducting power transmission cables coupled with cryogenically cooled semiconductor inverters and converters, used to supply power to cryogenically operated or room-temperature computers and servers. Other options and features include a lighting system whose performance is enhanced by the cold temperatures, fiber optic connections operated at cryogenic temperatures, integrated renewable energy power sources, advanced energy storage technologies, cryogenically operated computers, and a number of other cryogenic hardware. The operating temperature of the cryogenic components can be anywhere in the range between 0 K and 200 K, with other components operating above 200 K.
摘要:
An ultra compact ring topology puts the output terminals of solid state switches physically at the center of a circuit with the switches surrounded by voltage busses. The switches are symmetrically arranged around the output bus, the voltage busses are filtered (decoupled) to ground using symmetrically positioned filter components, and lead lengths to and from the switches are minimized. Switch driver circuits are closely integrated with each switch and positioned as close as possible, each to its associated switch, and arranged symmetrically. Switches may be at cryogenic temperatures and busses and lead connectors may be superconductive.
摘要:
This invention describes a means by which performance characteristics of capacitors can be improved. This is achieved by reducing the temperature, preferably but not exclusively to cryogenic temperatures below 100 K. The dielectric strength, dielectric losses, equivalent series resistance, and plate losses in many capacitors, such as film capacitors, improve as the temperature is decreased. Current carrying capacity is improved. A capacitor bank exhibits energy densities up to four times those of conventional, room-temperature capacitor banks. Cryogenic capacitors can be combined with cryogenically operated semiconductors or with superconductors to reduce the size, weight, and losses of a complete system.
摘要:
A method and apparatus for reducing conductive thermal losses in high-current cryogenic power electronics systems needing large cables to interface between warm and cold environments. Thermal losses increase with increasing cross-sectional area. The total current at the warm/cold interface is split into many smaller currents by splitting the power buss into a plurality of parallel leads. Respective physical switches in each smaller lead at the interface interrupt current flow, and at the same time open the path for thermal conduction along the lead. When little or no current is flowing through the system, selected smaller leads of the power buss are physically opened by the associated switches to stop the thermal and electrical flow along these leads. Current diverts to another parallel lead in the buss but the cross section for heat flow is reduced at the interface.
摘要:
A bi-directional power converter for cryogenic operation based on a bi-directional cryo-MOSFET switch. Cryogenic power electronics lends itself easily to bi-directional topologies, and brings higher efficiencies, further reductions in switching speed, higher-frequency operation, reduction in size and weight of associated transformers and inductors, and reductions in overall size and weight. In addition, cryogenic power electronics operating around liquid nitrogen temperatures is easily integrated with superconducting motors, motor drives, and transformers, all of which can reduce size and weight of shipboard power systems, allowing for greater payload.
摘要:
An electrical switching topology for a hybrid switch provides extremely low losses in both cryogenic and non-cryogenic electronic systems. In this switch having switch modules connected in parallel, switching losses in a first module are separated from conduction losses in the parallel-connected second module. The conduction losses are then further reduced by cryogenically cooling the second module. Since the switching losses of the first module can be absorbed outside a cryogenic container, the switching losses do not add to the cryogenic heat load. In other applications, the switching module operates at lower temperatures to provide higher switching speeds and reduces switching heat generation.
摘要:
Losses are reduced in electrical conductors and filters, especially those made with superconducting cables or inductors, which carry currents having both direct current (DC) and alternating current (AC) portions as in rectifier busses and power distribution systems. Superconducting cables and chokes are capable of passing direct current with practically zero losses, but they exhibit considerable AC losses. A low impedance AC bypass of the superconducting cables and chokes minimizes these losses.