摘要:
A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler. The amount of oxygen enrichment and the total gas flow through the boiler is controlled so as to maintain the heat transfer patterns within the boiler at the originally-design specification for operation by air combustion.
摘要:
A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler. The amount of oxygen enrichment and the total gas flow through the boiler is controlled so as to maintain the heat transfer patterns within the boiler at the originally-design specification for operation by air combustion.
摘要:
A method for operating a boiler using oxygen-enriched oxidants includes introducing oxygen-enriched air, or oxygen and air, in which the oxygen concentration ranges from about 21% to about 100% by volume. Fuel and oxygen-enriched air are introduced into the combustion space within the steam-generating boiler. The fuel and oxygen-enriched air is combusted to generate thermal energy. At least a portion of the flue gases are collected and at least a portion are recirculated through the boiler. In the steam-generating boiler, the oxygen-enriched oxidant is introduced at one or more locations within the radiation zone and the convection zone of the boiler. Additionally, flue gas is collected and recirculated into one or more locations within the radiation zone and/or the convection zone of the boiler. The amount of oxygen enrichment and the total gas flow through the boiler is controlled so as to maintain the heat transfer patterns within the boiler at the originally-design specification for operation by air combustion.
摘要:
An oxygen fired power generation system is disclosed. The power generation system has a high pressure combustor having a water recycle temperature control subassembly, and an intermediate pressure combustor having a CO2 recycle temperature control subassembly. Thus, a first energy cycle utilizes a first energy source operatively associated with a corresponding first heat sink, and a first inert agent to provide energy transfer therebetween and temperature control during operation of the first energy source. In like fashion, a second energy cycle utilizes a second energy source operatively associated with a corresponding second heat sink, and a second inert agent to provide energy transfer therebetween and temperature control during operation of the second energy source. The first and second energy sources are not identical, the first and second heat sinks are not identical and the first and second inert agents are not identical. The first and second energy cycles are configured in combination to provide a power generation unit.
摘要翻译:公开了一种氧燃烧发电系统。 发电系统具有具有水循环温度控制子组件的高压燃烧器和具有CO 2 CO 2再循环温度控制子组件的中压燃烧器。 因此,第一能量循环利用与对应的第一散热器可操作地相关联的第一能量源和在第一能量源的运行期间提供能量转移和第一能量源的温度控制的第一惰性剂。 以类似的方式,第二能量循环利用与对应的第二散热器可操作地相关联的第二能量源和在第二能量源的操作期间提供能量传递和第二能量源的温度控制的第二惰性剂。 第一和第二能量源不相同,第一和第二散热器不相同,第一和第二惰性剂不相同。 第一和第二能量循环被组合以提供发电单元。
摘要:
A process for burning a sulfur-containing fuel to produce a flue gas. The process includes introducing a sulfur-containing fuel into a combustion chamber, introducing an oxidant stream into the combustion chamber and mixing it with the sulfur-containing fuel to define a combustion zone, and introducing potassium carbonate into the combustion chamber. The sulfur-containing fuel is burned to produce the flue gas and potassium sulfate.
摘要:
An improved process for burning solid fuel particles in a combustion chamber and creating a flue gas is disclosed. The method comprises creating a fuel gas stream by mixing the solid fuel particles with a conveying gas, transporting the fuel gas stream through a fuel duct terminating at the combustion chamber at a fuel exit plane and injecting an oxygen stream through an injection device into said fuel gas at an oxygen injection location selected to create a mixing zone to mix the oxygen stream and the fuel gas stream immediately prior to or coincident with combustion of the fuel. Operating parameters of the process can be varied to optimally reduce NOx emissions.
摘要:
A method and apparatus for monitoring the flue gases of a furnace combustion process is disclosed. A by-pass circuit that communicates a sample of flue gases to be monitored from a furnace, through a measurement chamber and back to the furnace or furnace exhaust duct is provided. The by-pass circuit has a gas sampling probe with a fume inlet opening, the probe being positioned for withdrawing the sample to be monitored and transmitting it through the by-pass circuit. A measurement device is positioned in the measurement chamber and comprises an in situ optical device which provides real-time measurement of targeted flue gas species concentrations.
摘要:
An injection lance for injecting a fluid over a predefined target area within a system includes a support block with an inlet side and an outlet side. A plurality of channels are disposed non-parallel with respect to each other within the support block and extend between the inlet and outlet sides of the support block so as to receive fluid at the inlet side and deliver fluid through the support block for injection from the outlet side of the support block over the target area. At least two channels extend from the inlet side toward the outlet side in a direction away from a central axis of the support block, where the central axis intersects the outlet side. The target area includes a plurality of consecutively aligned sectors, and the channels are oriented within the support block so that a central axis of a fluid stream injected from each channel over the target area is centered between longitudinal boundaries defined by a respective sector.
摘要:
An improved process for burning a fuel to produce a flue gas is disclosed. The fuel is burned in a main combustion zone in the presence of a main combustion oxidant to produce combustion products. The combustion products are mixed in a post-combustion zone positioned downstream from the main combustion zone. The post-combustion zone is provided with a recirculation zone positioned proximate to the main combustion zone and an injection zone positioned downstream from the recirculation zone. An post-combustion oxidant is injected into the combustion products in the injection zone. At least one of (a) the residence time of the combustion products in the post-combustion zone, (b) the temperature range of the combustion products contained within the injection zone and (c) the oxygen content of the oxidant is controlled to optimize the level of CO and NOx in the flue gas.
摘要:
Combustion process especially applicable to cement works, in which process it is desired to use fuels which are difficult to ignite. To do so, a flame comprising a primary zone and a secondary zone is created. The hot primary zone is created using an oxy-fuel flame, which makes it possible to preheat the fuel which is difficult to ignite so as to raise it to the suitable temperature in the secondary zone where it burns, with air, in order to create the main flame. Applications: cement, metallurgy, glass, etc.