Abstract:
An aerosol-generating device (1) includes a heating element (8); a dosing assembly (2) comprising: a cutting mechanism (4) disposed in a cutting region and configured to cut a portion from an aerosol-generating article (20) received by the aerosol-generating device; and a transfer mechanism (6) configured to transfer a cut portion of the aerosol-generating article from the cutting region to the heating element. The cutting mechanism may include a first blade (41) with a first cutting direction and a second blade (42) with a second cutting direction different from the first cutting direction.
Abstract:
The aerosol-generating article for use with an aerosol-generating device, the aerosol-generating article comprises an aerosol-forming substrate, and a surface area comprising a three dimensional code. The invention also relates to an aerosol-generating system comprising an aerosol-generating device and an aerosol-generating article.
Abstract:
An aerosol-generating system for oral or nasal delivery of a generated aerosol to a user is provided, including a heater element configured to heat an aerosol-forming substrate to generate an aerosol; a power source; a controller configured to control operation of the heater element, the controller including or being connected to a means to detect a change in air flow past the heater element; first data storage means for recording detected changes in airflow past the heater element and data relating to the operation of the heater element; second data storage means including a database relating changes in airflow and data relating to the operation of the heater element to the properties of the aerosol delivered to the user; and an indication means coupled to the second data storage means for indicating to the user a property of the aerosol delivered to the user.
Abstract:
The aerosol-generating article for use with an aerosol-generating device, the aerosol-generating article comprises an aerosol-forming substrate, and a surface area comprising a three dimensional code. The invention also relates to an aerosol-generating system comprising an aerosol-generating device and an aerosol-generating article.
Abstract:
The aerosol-generating article for use with an aerosol-generating device, the aerosol-generating article comprises an aerosol-forming substrate, and a surface area comprising a three dimensional code. The invention also relates to an aerosol-generating system comprising an aerosol-generating device and an aerosol-generating article.
Abstract:
There is provided a tobacco flavoured dry powder formulation comprising a plurality of particles comprising a base material and a tobacco flavouring composition, wherein a first ratio by weight of (β-ionone+β-damascenone) to (phenol) in the tobacco flavoured dry powder formulation is greater than 0.25. Further, there is provided a method of producing one such tobacco flavoured powder formulation. The method comprises the steps of: preparing a tobacco starting material; heating the tobacco starting material at an extraction temperature of between 100 degrees Celsius and 160 degrees Celsius for at least 90 minutes; collecting the volatile compounds released from the tobacco starting material during the heating step; forming a liquid tobacco flavouring composition comprising the collected volatile compounds; combining a base material and the liquid tobacco flavouring composition to form tobacco flavoured particles.
Abstract:
The aerosol-generating article for use with an aerosol-generating device, the aerosol-generating article comprises an aerosol-forming substrate, and a surface area comprising a three dimensional code. The invention also relates to an aerosol-generating system comprising an aerosol-generating device and an aerosol-generating article.
Abstract:
An aerosol-generating system for oral or nasal delivery of a generated aerosol to a user is provided, including a heater element configured to heat an aerosol-forming substrate to generate an aerosol; a power source; a controller configured to control operation of the heater element, the controller being configured to detect a change in air flow past the heater element: a first data storage recording detected changes in airflow past the heater element and data relating to the operation of the heater element; a second data storage including a database relating changes in airflow and data relating to the operation of the heater element to the properties of the aerosol delivered to the user; and an indicator coupled to the second data storage configured to indicate to the user a property of the aerosol delivered to the user.