Abstract:
The present invention relates to zinc electrode and to methods of producing zinc electrode and particularly to a method of producing zinc electrode providing dimensional/geometrical stability during a battery charge/discharge operation. The invention provides methods of use of batteries comprising the zinc electrode of this invention. Applications of batteries of this invention include electric vehicles, portable electronics and drones.
Abstract:
A method for renovation of a consumed anode in a metal-air cell without dismantling the cell comprises circulating electrolyte through the cell to evacuate used slurry from the cell, circulating electrolyte with fresh slurry into the cell and allowing sedimentation of the fresh slurry inside the cell to form an anode and compacting the slurry to reduce the gaps between its particles. A meta-air cell enabling renovation of a consumed anode without dismantling the cell defining first outer face of the cell, air cathode layer adjacent the porous wall, separator wall disposed on the inner face of the air cathode layer, cell space volume to contain electrolyte and metal granules slurry, current collector layer to form an anode, made of current conductive material disposed in the space and flexible wall defining a second outer face of the cell wherein the flexible wall is adapted to be pushed towards inside of the cell subject to pressure applied to its outer face, thereby to reduce the volume of the space.
Abstract:
This invention provides a shutdown system and methods for battery shutdown followed by a standby mode using a washing solution controlled by pH such that the electrode remains stable.
Abstract:
A method for renovation of a consumed anode in a metal-air cell without dismantling the cell according to embodiments of the present invention comprising circulating electrolyte through the cell to evacuate used slurry from the cell, circulating electrolyte with fresh slurry into the cell and allowing sedimentation of the fresh slurry inside the cell to form an anode and compacting the slurry to reduce the gaps between its particles. A meta-air cell enabling renovation of a consumed anode without dismantling the cell defining first outer face of the cell, air cathode layer adjacent the porous wall, separator wall disposed on the inner face of the air cathode layer, cell space volume to contain electrolyte and metal granules slurry, current collector layer to form an anode, made of current conductive material disposed in the space and flexible wall defining a second outer face of the cell wherein the flexible wall is adapted to be pushed towards inside of the cell subject to pressure applied to its outer face, thereby to reduce the volume of the space.
Abstract:
This invention provides a shutdown system and methods for battery shutdown followed by a standby mode using a washing solution controlled by pH such that the electrode remains stable.
Abstract:
A method for renovation of a consumed anode in a metal-air cell without dismantling the cell according to embodiments of the present invention comprising circulating electrolyte through the cell to evacuate used slurry from the cell, circulating electrolyte with fresh slurry into the cell and allowing sedimentation of the fresh slurry inside the cell to form an anode and compacting the slurry to reduce the gaps between its particles. A meta-air cell enabling renovation of a consumed anode without dismantling the cell defining first outer face of the cell, air cathode layer adjacent the porous wall, separator wall disposed on the inner face of the air cathode layer, cell space volume to contain electrolyte and metal granules slurry, current collector layer to form an anode, made of current conductive material disposed in the space and flexible wall defining a second outer face of the cell wherein the flexible wall is adapted to be pushed towards inside of the cell subject to pressure applied to its outer face, thereby to reduce the volume of the space.
Abstract:
The present invention relates to safety methods and mechanisms for treating electrolyte solutions in batteries, specifically metal-air batteries. Systems and methods of the invention protect the battery, protect the battery operator and protect the environment from potential material hazards. This invention provides materials for arresting a potentially hazardous electrolyte solution by forming solid or gel porous polymer structures. The polymer porous structures consume or confine the electrolyte solution thus preventing its hazardous potential.
Abstract:
The present invention relates to zinc electrode and to methods of producing zinc electrode and particularly to a method of producing zinc electrode providing dimensional/geometrical stability during a battery charge/discharge operation. The invention provides methods of use of batteries comprising the zinc electrode of this invention. Applications of batteries of this invention include electric vehicles, portable electronics and drones.
Abstract:
A method for renovation of a consumed anode in a metal-air cell without dismantling the cell according to embodiments of the present invention comprising circulating electrolyte through the cell to evacuate used slurry from the cell, circulating electrolyte with fresh slurry into the cell and allowing sedimentation of the fresh slurry inside the cell to form an anode and compacting the slurry to reduce the gaps between its particles. A meta-air cell enabling renovation of a consumed anode without dismantling the cell defining first outer face of the cell, air cathode layer adjacent the porous wall, separator wall disposed on the inner face of the air cathode layer, cell space volume to contain electrolyte and metal granules slurry, current collector layer to form an anode, made of current conductive material disposed in the space and flexible wall defining a second outer face of the cell wherein the flexible wall is adapted to be pushed towards inside of the cell subject to pressure applied to its outer face, thereby to reduce the volume of the space.
Abstract:
This invention provides a system and a method for safe production of electrolyte at required concentration on site on demand where occasionally only water is needed to be filled up. The system includes two main units: a saturated electrolyte unit and a diluted electrolyte unit.