Abstract:
A system and a method for detecting a shaft shear event in a gas turbine engine are disclosed. The system comprises a sensor configured to detect a shaft shear force exerted by a shaft on a support structure supporting the shaft where the shaft shear force is indicative of shearing of the shaft. The system also comprises a controller operatively coupled to the sensor and configured to initiate a shutdown of the gas turbine engine in response to the detection of the shaft shear force by the sensor.
Abstract:
There is described herein a real-time scheme, implementable in software, hardware, or a combination thereof, to detect a resonating frequency of a structure from a sensed signal and dynamically set the center frequency of an adaptive compensator for effective attenuation of the resonating frequency.
Abstract:
A system and method for controlling an aircraft propeller are provided. In anticipation of a condition in which a parameter related to an angle of a plurality of blades of the propeller reaches a value beyond a predetermined threshold, a first control signal is output comprising instructions to actuate a feather valve operatively coupled to an actuator configured to adjust the angle in response to hydraulic pressure, thereby causing the feather valve to provide the hydraulic pressure to the actuator and the angle to be adjusted for bringing the parameter towards the threshold. When the parameter reaches the predetermined threshold, a second control signal is output comprising instructions to hold the feather valve at a position in which the hydraulic pressure is withheld from the actuator, thereby causing the angle to remain unchanged.
Abstract:
There are described herein methods and systems for providing an engine computer with a power request having been determined by an aircraft computer. The power request is sent over a communication bus and once it reaches the engine computer, the latency due to the different update rates of the engine computer and the aircraft computer are compensated for.
Abstract:
There is described herein methods and system for correcting steady state errors in propeller speed by calculating a leakage flow rate as a function of engine and propeller parameters.
Abstract:
There are described herein methods and systems for estimating a system parameter in a closed loop scheme using a sensor model associated with a sensor performing a measurement of the system parameter. Past and current measurements of the parameter are used to provide an initial estimate of the system parameter and sensor dynamics are used to refine the estimated parameter.
Abstract:
Systems and methods for controlling a gas turbine engine are provided. The system comprises an interface to a fuel flow metering valve for controlling a fuel flow to the engine in response to a fuel flow command and a controller connected to the interface and configured for outputting the fuel flow command to the fuel flow metering valve in accordance with a required fuel flow. The controller comprises a feedforward controller configured for receiving a requested engine speed and acceleration, obtaining a steady-state fuel flow for the requested engine speed and a relationship between fuel flow and gas generator speed, and determining the required fuel flow to obtain the requested engine acceleration as a function of the requested engine speed, the steady-state fuel flow, and the relationship between fuel flow and gas generator speed.
Abstract:
There is described herein a real-time scheme, implementable in software, hardware, or a combination thereof, to detect a resonating frequency of a structure from a sensed signal and dynamically set the center frequency of an adaptive compensator for effective attenuation of the resonating frequency.
Abstract:
There is provided an aircraft engine printed circuit board assembly generally having a functional circuit contributing to the operation of an aircraft engine. The functional circuit has a first substrate portion, a first electronic component supported by the first substrate portion, and a first electrical conductor supported by the first substrate portion and leading to the first electronic component. The aircraft engine printed circuit board assembly generally has a monitoring circuit having a second substrate portion, a second electronic component supported by the second substrate portion, a second electrical conductor supported by the second substrate portion and leading to the second electronic component, the second electrical conductor having a shorter life expectancy than the first electrical conductor, and a detector monitoring an indicator of operativeness of the second electrical conductor, in which the first electrical conductor and the second electrical conductor are both exposed to the same environment.
Abstract:
There is described herein methods and system for correcting steady state errors in propeller speed by calculating a leakage flow rate as a function of engine and propeller parameters.