Abstract:
A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
Abstract:
A cardiac rhythm management system provides an increase in pacing rate as a combination of responses to three characteristics of a relative-temperature signal: a dip, a positive slope, and a positive magnitude. The relative-temperature signal is the difference between a short-term and a long-term temperature average. A dip produces a limited and temporary rate increase having a first proportionality. A positive slope produces a rate increase with a second proportionality. A positive magnitude produces a rate increase with a third proportionality. The dip response seeds the slope response to provide a seamless and immediate rate transition after a dip. The cardiac rhythm management system limits and filters the sum of the rate increases to provide a sensor indicated rate, which is used to stimulate the heart.
Abstract:
A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
Abstract:
A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
Abstract:
A cardiac pacing system comprising one or more leadless cardiac pacemakers configured for implantation in electrical contact with a cardiac chamber and configured to perform cardiac pacing functions in combination with a co-implanted implantable cardioverter-defibrillator (ICD). The leadless cardiac pacemaker comprises at least two leadless electrodes configured for delivering cardiac pacing pulses, sensing evoked and/or natural cardiac electrical signals, and bidirectionally communicating with the co-implanted ICD.
Abstract:
A cardiac pacing system comprising one or more leadless cardiac pacemakers configured for implantation in electrical contact with a cardiac chamber and configured to perform cardiac pacing functions in combination with a co-implanted implantable cardioverter-defibrillator (ICD). The leadless cardiac pacemaker comprises at least two leadless electrodes configured for delivering cardiac pacing pulses, sensing evoked and/or natural cardiac electrical signals, and bidirectionally communicating with the co-implanted ICD.
Abstract:
A leadless cardiac pacemaker is provided which can include any number of features. In one embodiment, the pacemaker can include a tip electrode, pacing electronics disposed on a p-type substrate in an electronics housing, the pacing electronics being electrically connected to the tip electrode, an energy source disposed in a cell housing, the energy source comprising a negative terminal electrically connected to the cell housing and a positive terminal electrically connected to the pacing electronics, wherein the pacing electronics are configured to drive the tip electrode negative with respect to the cell housing during a stimulation pulse. The pacemaker advantageously allows p-type pacing electronics to drive a tip electrode negative with respect to the can electrode when the can electrode is directly connected to a negative terminal of the cell. Methods of use are also provided.
Abstract:
A cardiac rhythm management system provides an increase in pacing rate as a combination of responses to three characteristics of a relative-temperature signal: a dip, a positive slope, and a positive magnitude. The relative-temperature signal is the difference between a short-term and a long-term temperature average. A dip produces a limited and temporary rate increase having a first proportionality. A positive slope produces a rate increase with a second proportionality. A positive magnitude produces a rate increase with a third proportionality. The dip response seeds the slope response to provide a seamless and immediate rate transition after a dip. The cardiac rhythm management system limits and filters the sum of the rate increases to provide a sensor indicated rate, which is used to stimulate the heart.
Abstract:
A cardiac rhythm management system provides an increase in pacing rate as a combination of responses to three characteristics of a relative-temperature signal: a dip, a positive slope, and a positive magnitude. The relative-temperature signal is the difference between a short-term and a long-term temperature average. A dip produces a limited and temporary rate increase having a first proportionality. A positive slope produces a rate increase with a second proportionality. A positive magnitude produces a rate increase with a third proportionality. The dip response seeds the slope response to provide a seamless and immediate rate transition after a dip. The cardiac rhythm management system limits and filters the sum of the rate increases to provide a sensor indicated rate, which is used to stimulate the heart.
Abstract:
A leadless cardiac pacemaker that does not require a separate hermetic housing surrounding the battery and electronics compartments is provided. The cardiac pacemaker can include a battery disposed in a battery housing and a set of electronics disposed in an electronics housing. In some embodiments, the battery housing and the electronics housing can comprise an external surface of the pacemaker. The pacemaker can include a first set of welds separating the battery from the set of electronics, and a second set of welds separating the set of electronics and the battery from an exterior of the housing. Various embodiments for achieving dual-redundant welds are also provided.