摘要:
A method and system are provided for an improved semantic segmentation using a multi-stream late fusion using pretrained encoders to encode disparate channels independently while also integrating selected image features at a more abstract level in order to provide improved localization and image classification.
摘要:
Techniques for determining print quality for a 3D printer are disclosed. An example method includes obtaining an image of a stream of material jetted from a nozzle of the 3D printer, and binarizing the image to distinguish background features from foreground features contained in the image. The method also includes identifying elements of jetted material in the foreground features, and computing statistical data characterizing the identified elements. The method also includes generating a quality score of jetting quality based on the statistical data and controlling the 3D printer based on the quality score. The quality score indicates a degree to which the elements of jetted material form droplets of a same size, shape, alignment, and jetting frequency.
摘要:
Embodiments described herein provide a system for assessing the surface of an object for detecting contamination or other defects. During operation, the system obtains an input image indicating the contamination on the object and generates a synthetic image using an artificial intelligence (AI) model based on the input image. The synthetic image can indicate the object without the contamination. The system then determines a difference between the input image and the synthetic image to identify an image area corresponding to the contamination. Subsequently, the system generates a contamination map of the contamination by highlighting the image area based on one or more image enhancement operations.
摘要:
A method of labeling a dataset of input samples for a machine learning task includes selecting a plurality of pre-trained machine learning models that are related to a machine learning task. The method further includes processing a plurality of input data samples through each of the pre-trained models to generate a set of embeddings. The method further includes generating a plurality of clusterings from the set of embeddings. The method further includes analyzing, by a processing device, the plurality of clusterings to extract superclusters. The method further includes assigning pseudo-labels to the input samples based on analysis.
摘要:
One embodiment provides a system that facilitates efficient collection of training data. During operation, the system obtains, by a recording device, a first image of a physical object in a scene which is associated with a three-dimensional (3D) world coordinate frame. The system marks, on the first image, a plurality of vertices associated with the physical object, wherein a vertex has 3D coordinates based on the 3D world coordinate frame. The system obtains a plurality of second images of the physical object in the scene while changing one or more characteristics of the scene. The system projects the marked vertices on to a respective second image to indicate a two-dimensional (2D) bounding area associated with the physical object.
摘要:
Embodiments described herein provide a system for facilitating dynamic assistance to a user in an augmented reality (AR) environment of an AR device. During operation, the system detects a first element of an object using an object detector, wherein the object is associated with a task and the first element is associated with a step of the task. The system then determines an orientation and an alignment of the first element in the physical world of the user, and an overlay for the first element. The overlay can distinctly highlight one or more regions of the first element and indicate how the first element fits in the object. The system then applies the overlay to the one or more regions of the first element at the determined orientation in the AR environment.
摘要:
One embodiment of the present invention provides a system for generating one or more recommendations for a customer. During operation, the system obtains transaction and image data for a plurality of existing customers. The system then trains one or more parameters of conditioning variables associated with one or more clusters based on image data as part of a predictive model. Next, the system determines a list of recommendable items for each cluster, based on the transaction data. The system obtains transaction and image data for a customer. The system then determines that the customer is a member of a cluster associated with the predictive model, based on the obtained transaction and image data. The system generates a recommendation for one or more recommendable items for the customer based on the determined cluster membership.
摘要:
A system and method schedules jobs in a cluster of compute nodes. A job with an unknown resource requirement profile is received. The job includes a plurality of tasks. Execution of some of the plurality of tasks is scheduled on compute nodes of the cluster with differing capability profiles. Timing information regarding execution time of the scheduled tasks is received. A resource requirement profile for the job is inferred based on the received timing information and the differing capability profiles. Execution of remaining tasks of the job is scheduled on the compute nodes of the cluster using the resource requirement profile.
摘要:
A system is provided which obtains images of a physical object captured by an AR recording device in a 3D scene. The system measures a level of diversity of the obtained images, for a respective image, based on at least: a distance and angle; a lighting condition; and a percentage of occlusion. The system generates, based on the level of diversity, a first visualization of additional images to be captured by projecting, on a display of the recording device, first instructions for capturing the additional images using the AR recording device. The system trains a model based on the collected data. The system performs an error analysis on the collected data to estimate an error rate for each image of the collected data. The system generates, based on the error analysis, a second visualization of further images to be captured. The model is further trained based on the collected data.
摘要:
Embodiments described herein provide a system for generating synthetic images with localized editing. During operation, the system obtains a source image and a target image for image synthesis and selects a semantic element from the source image. The semantic element indicates a semantically meaningful part of an object depicted in the source image. The system then determines the style information associated with the source and target images. Subsequently, the system generates a synthetic image by transferring the style of the semantic element from the source image to the target image based on the feature representations. In this way, the system can facilitate localized editing of the target image.