摘要:
The present invention provides novel polynucleotides encoding Drosophila DmTNF polypeptides, fragments and homologs thereof. The present invention also is directed to novel polynucleotides encoding two Drosophila DmTNF variants, DmTNFv1 and DmTNFv2 polypeptides, fragments and homologs thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention, in addition to methods of genetically modifying Drosophila or cultured cells to express or mis-express DmTNF, DmTNFv1, or DmTNFv2. The invention also relates to the use of such modified insects or cells to characterize DmTNF activity, identify TNF-like genes and/or genes implicated in modulating TNF, characterize TNF signaling pathways, and/or to identify modulators of DmTNF activity.
摘要:
The present invention provides novel polynucleotides encoding Drosophila DmTNF polypeptides, fragments and homologs thereof. The present invention also is directed to novel polynucleotides encoding two Drosophila DmTNF variants, DmTNFv1 and DmTNFv2 polypeptides, fragments and homologs thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention, in addition to methods of genetically modifying Drosophila or cultured cells to express or mis-express DmTNF, DmTNFv1, or DmTNFv2. The invention also relates to the use of such modified insects or cells to characterize DmTNF activity, identify TNF-like genes and/or genes implicated in modulating TNF, characterize TNF signaling pathways, and/or to identify modulators of DmTNF activity.
摘要:
The present invention provides novel polynucleotides encoding Drosophila DmTNF polypeptides, fragments and homologs thereof. The present invention also is directed to novel polynucleotides encoding two Drosophila DmTNF variants, DmTNFv1 and DmTNFv2 polypeptides, fragments and homologs thereof. Also provided are vectors, host cells, antibodies, and recombinant and synthetic methods for producing said polypeptides. The invention further relates to screening methods for identifying agonists and antagonists of the polynucleotides and polypeptides of the present invention, in addition to methods of genetically modifying Drosophila or cultured cells to express or mis-express DmTNF, DmTNFv1, or DmTNFv2. The invention also relates to the use of such modified insects or cells to characterize DmTNF activity, identify TNF-like genes and/or genes implicated in modulating TNF, characterize TNF signaling pathways, and/or to identify modulators of DmTNF activity.
摘要:
Disclosed is a lamp bead structure encapsulating LED driver ICs connected in parallel, comprising a power supply, a controller and a lamp bead group, where the power supply supplies power to the controller and the lamp bead group, the lamp bead group includes a plurality of LED lamps, the LED lamps are each provided with a DIN, a VDD pin and a VSS pin, the DIN pins of all the LED lamps are electrically connected to the controller, and are connected in parallel with one another; the VDD pins of all the LED lamps are electrically connected to a positive electrode of the power supply, and are connected in parallel with one another; and the VSS pins of all the LED lamps are electrically connected to a negative electrode of the power supply, and are connected in parallel with one another.
摘要:
The invention discloses a recombinant gene which enhances the ability of fish to tolerate low dissolved oxygen (DO) stress and the use thereof. Carp β-actin gene promoter is used as a promoter and Vitreoscilla hemoglobin gene is used as a target gene, so as to construct the recombinant Vitreoscilla hemoglobin gene driven by carp β-actin promoter. The modeling organism zebrafish is used as the research object, and the recombinant gene is microinjected into zygotes of zebrafish. After PCR screening and 156 h low DO stress test, transgenic fish are obtained with a survival rate of 92%, which is significantly different from the survival rate of 65% of the control fish group. The vhb transgenic zebrafish obtain hypoxia tolerance. When the recombinant gene is applied to the economically farmed species, i.e., blunt snout bream (Megalobrama amblycephala) and common carp (Cyprinus carpio L.), it enhances their hypoxia tolerance as well. Such genetically improved breeding technique may be widely used for breeding new excellent farmed species with the hypoxia tolerance.