Abstract:
An imaging apparatus includes: a diffuse-reflector which covers an imaging space on a pathway that a human passes through, from at least a side out of both sides of the pathway, and includes a reflector which diffusely reflects a sub-terahertz wave; a light source which emits a sub-terahertz wave onto the reflector; and a detector which receives a reflected wave of the sub-terahertz wave which has been emitted from the light source, diffusely reflected by the reflector, and reflected by the human, and detects an intensity of the reflected wave received. The diffuse-reflector includes a visible light transmissive area which transmits visible light.
Abstract:
The present disclosure provides a virtual image display apparatus, head-up display system, and vehicle that distribute a spatially divided parallax image between a left eye and right eye of a user appropriately. The virtual image display apparatus according to the present disclosure includes a display device configured to spatially divide with a first pitch and to output right-eye images and left-eye images, first optical members periodically disposed with a second pitch, distributing light based on the output from the display device between a right-eye direction and a left-eye direction, and a second optical member configured to reflect or refract, by positive power, the light distributed between the right-eye direction and the left-eye direction by the first optical members. The first pitch is narrower than the second pitch.
Abstract:
An object of the present disclosure is to provide a virtual image display device which improves convenience by supporting fusion. The virtual image display device according to the present disclosure includes: a display device which outputs a parallax image; an optical system which displays a virtual image based on the parallax image; an obtaining unit which obtains a change of a point of gaze of an observer; and a controller which, when obtaining from the obtaining unit a change of the point of gaze of the observer from a first point of gaze to a second point of gaze, controls the display device to generate at least one intermediate parallax image between a parallax image corresponding to the first point of gaze and a parallax image corresponding to the second point of gaze.
Abstract:
A light deflection element is capable of deflecting incident light so as to follow a position of an observer and suppressing reduction in intensity of light that reaches eyes of the observer regardless of their position. The light deflection element includes: a first optical element configured to deflect incident light; a second optical element configured to change a deflection direction of emitted light by changing a refractive index thereof according to a voltage applied thereto; a third optical element; and a control section configured to control the voltage applied to the second optical element. At least one of interfaces between the first and second optical elements and the second and third optical elements is an aspheric surface. The aspheric surface has an optical power that compensates enlargement of the emitted light which is caused by refractive index distribution caused when a voltage is applied to the second optical element.
Abstract:
An image display apparatus includes a display device, a parallax barrier, and a controller. The display device displays an image for right-eye and an image for left-eye, with the images having a parallax amount between them. The parallax barrier directs, toward a right eye and a left eye, light of the images which are output from the display device. The controller controls the display device such that the display device continuously varies the parallax amount and the luminance of the displayed images and switches between a mode of showing the images to the both eyes and a mode of showing the corresponding image to any one of the eyes.
Abstract:
The present disclosure provides an image display apparatus having excellent light converging characteristics. The image display apparatus includes: a liquid crystal prism element including a prism array in which a plurality of prisms are arranged, a liquid crystal layer laminated on the prism array, and electrodes provided at position corresponding to the respective prisms which form the prism array; a control section configured to control a voltage to be applied to each electrode; and a position detection section configured to detect a viewing position of a user. The control section is able to apply the same or different voltages to the respective electrodes provided at the positions corresponding to the respective prisms, on the basis of a result of the detection of the viewing position by the position detection section.