Abstract:
A method of measuring proton conductivity includes configuring multiple pairs of electrodes having an electrolyte film, which is a target to be measured, interposed between the electrodes; measuring the electrodes individually or by combining the electrodes in multiple pairs; calculating the amount of change of impedance values with respect to a change of areas of the electrodes; and calculating proton conductivity from the calculated results, and thus, it is possible to increase measurement accuracy.
Abstract:
A gas-producing apparatus that produces hydrogen or oxygen, includes: an electrolysis cell that produces hydrogen and oxygen through electrolysis of water; and a gas-liquid separation device that is connected to the electrolysis cell and that receives the water and the hydrogen or the oxygen, wherein the gas-liquid separation device includes a first chamber and a second chamber, the first chamber and the second chamber are separated by a partition wall, and a lower part of the first chamber and a lower part of the second chamber communicate with one another.
Abstract:
Disclosed is a resistance-measurement apparatus, including: multiple measurement chambers for holding powdery materials; multiple first electrodes that press the respective powder materials in the measurement chambers; at least one second electrode that faces the first electrodes and that presses the powdery materials; and a measuring device that measures a resistance between the first electrodes and the at least one second electrode. Further disclosed is a resistance-measurement method, including: (i) placing at least one powdery material between a number N of first electrodes and at least one second electrode, and pressing the at least one powdery material therebetween; (ii) measuring an impedance between the number N of the first electrodes and the at least one second electrode; and (iii) measuring an impedance between a number M of the first electrodes and the at least one second electrode, wherein the number N is different from the number M.
Abstract:
Provided is an electromechanical hydrogen pump, including: (i) an electrolyte membrane; (ii) an anode electrode layer and an anode diffusion layer that are provided at one side of the electrolyte membrane; (iii) a cathode electrode layer and a cathode diffusion layer that are provided at the other side of the electrolyte membrane; (iv) an anode seal that has openings each surrounding the anode diffusion layer; (v) a cathode seal that has openings each surrounding the cathode diffusion layer; (vi) an anode separator that is placed on an outer side of the anode diffusion layer; and (vii) a cathode separator that is placed on an outer side of the cathode diffusion layer, wherein no spaces are provided between the anode diffusion layer and the anode seal or between the cathode diffusion layer and the cathode seal.