Abstract:
An optical system includes a first expansion region that expands a luminous flux traveling in a first direction by splitting and duplicating it into luminous fluxes traveling in a second direction intersecting the first direction to increase the number of luminous fluxes, and a second expansion region that expands the luminous fluxes traveling in the second direction by splitting and duplicating them to increase the number of luminous fluxes. The first expansion region has a central region that contains a center of the first expansion region, and an end region that lies on at least one end side of the first expansion region. The end region has a diffracted light quantity less than half the diffracted light quantity in the central region.
Abstract:
A head-up display of the present disclosure projects a display image on a transparent reflecting member. The head-up display includes: a display device that displays the display image; and a projection optical system that projects the display image displayed on the display device. On an assumption that light reaching a center of a viewpoint region of the observer and corresponding to a center of the virtual image is reference light, the projection optical system includes a prism element that has an incident surface, a reflection surface, and an emitting surface different from the incident surface sequentially in an optical path from the display device. The emitting surface is inclined to the reference light. An inclination amount θ2 of the reference light emitted from the emitting surface with respect to the emitting surface lies in a range of 15°
Abstract:
Head-up display includes display device, projection optical system, a polarization member, and a first polarizer. Display device displays an image. Projection optical system includes refraction lens. Projection optical system projects the image displayed on display device to an observer. The polarization member is disposed between projection optical system and a reflection member that reflects light from projection optical system. Transmittance of the polarization member depends on a polarization direction of transmitted light. The first polarizer is disposed behind refraction lens on an optical path starting from display device. The first polarizer rotates a predetermined polarized component by a quarter of wavelength.
Abstract:
A head-up display includes a display device and a projection optical system. The projection optical system has a lens group including at least one lens element and projects onto a reflecting member an image displayed on the display device. The lens group includes a drive lens that shifts along an optical path to change its distance from the display device.
Abstract:
A head-up display projects an image on a windshield to allow a viewer to visually observe a virtual image. The head-up display includes a display device, a relay optical system, and a projection optical system. The display device displays an image. The relay optical system provides the image displayed by the display device as an intermediate image. The projection optical system reflects the intermediate image provided by the relay optical system to project the intermediate image on the windshield.
Abstract:
An inner focus lens system, in order from an object side, comprising: a first lens unit including a most-object-side negative first lens element; a positive second lens unit; and a negative third lens unit, wherein an aperture diaphragm is included, the first lens unit, the third lens unit, and the aperture diaphragm are fixed relative to an image surface in focusing, the second lens unit moves relative to the image surface in the focusing, and the conditions: BF/Y 1.6 (BF: distance from an apex of an image-side surface of a most-image-side lens element to the image surface; Y: maximum image height; TH: distance from an apex of an object-side surface of a most-object-side lens element to the apex of the image-side surface of the most-image-side lens element; f: focal length of the lens system) are satisfied.
Abstract:
A head-up display is configured to project an image on a transparent reflection member to cause an observer to visually recognize a virtual image, and includes a display device configured to display the image, and a projection optical system configured to project the image displayed by the display device as the virtual image for the observer. The projection optical system is configured to form an image as an intermediate image, and includes a first lens configured to condense light, and a first optical element configured to diffuse light. The first lens and the first optical element are disposed in this order along an optical path from the display device. The first lens is inclined with respect to a reference beam which is defined as a beam reaching a center of a viewpoint region of the observer and corresponding to a center of the virtual image.
Abstract:
A head-up display is configured to project an image on a transparent reflection member to cause an observer to visually recognize a virtual image, and includes a display device configured to display the image, and a projection optical system configured to project the image displayed by the display device as the virtual image for the observer. The projection optical system is configured to form the image as an intermediate image, and includes a first optical element configured to condense light, a first lens configured to condense light, and a second optical element configured to diffuse light. The first optical element, the first lens, and the second optical element are disposed in this order along an optical path from the display device.
Abstract:
The present invention provides a Fresnel lens that can reduce generation of concentric stray light. The Fresnel lens includes a sawtooth corrugated face that is formed by alternately disposing a first face inclined relative to optical axis A and a second face substantially parallel to optical axis A, and a light shielding mask is formed at a position corresponding to the second face.
Abstract:
A display apparatus includes a display unit that projects an image to a light transmissive display member. The display unit is configured to accommodate a display device and a projection optical system that projects the image displayed on the display device to the display member in a housing including an opening through which projected light is output. The projection optical system includes a first reflecting member disposed on a display device side and a second reflecting member disposed on an opening side in an optical path extending from the display device to the opening. A reflection surface of the first reflecting member that reflects the image displayed on the display device has a convex shape of a free-form surface, and a reflection surface of the second reflecting member that projects the image to the display member has a concave shape of a free-form surface.