Abstract:
A standing motion assist system includes a care belt including a holding mechanism including a holder that holds a back and both armpits of a care-receiver, and a connector that is connected to the holding mechanism; a rotational force applying mechanism that is connected to the holding mechanism and that rotates a front lower part of the holder upward and a rear upper part of the holder downward about a rotation axis extending through both armpits; a traction mechanism that is connected to the connector and pulls the connector; and a controller that controls the rotational force applying mechanism and the traction mechanism so that, after the traction mechanism has started the pulling motion, the rotational force applying mechanism rotates the holder at the same time as the traction mechanism pulls the connector forward and upward, and subsequently the traction mechanism pulls the connector upward.
Abstract:
A self-driving cleaner includes a drive unit that drives movement of a cleaner body, a control circuit disposed in the cleaner body, a camera that captures an image in front thereof, an obstacle detection sensor that detects an object, and a rotational frequency sensor that detects a stuck state. The control circuit (a) identifies information about a target object that caused the stuck state, (b) receives information indicating whether the target object is to be cleaned, and (c) controls the drive unit and a suction unit, when receiving information indicating the target object to be cleaned, to perform a first mode where the space excluding the target object is cleaned first and, thereafter, the target object is climbed if receiving cleaning reservation and perform a second mode where the target object is climbed first and, thereafter, the space excluding the target object is cleaned if receiving a cleaning start instruction.
Abstract:
A robot includes a tractor, a walker, an input device, and a controller. The tractor includes a connector and pulls a user through the connector. The walker includes wheels for moving the tractor and one or more brakes for the wheels and is coupled to the tractor. The input device receives an instruction to operate at least one of the tractor and the walker. In response to reception of the instruction by the input device, the controller determines whether or not to permit the tractor and/or the walker to perform a process based on the instruction, in accordance with a current state of the robot, the current state being one of a plurality of states of the robot. Each state is represented by using values of items, one of the items being an item indicating whether or not the one or more brakes are applied to the wheels.
Abstract:
A sitting motion assist system for assisting a sitting motion of a patient changing their posture from a standing posture to a sitting posture includes a care belt, a knee-bending adviser, and a pulling mechanism. The care belt can be put on the patient and includes a hold mechanism including a first holder capable of holding the neck or shoulder of the patient and a second holder capable of holding their lower back, and a coupler capable of being positioned on their chest and coupled to the hold mechanism. The knee-bending adviser advises the patient to perform a knee-bending motion. The pulling mechanism is coupled to the hold mechanism via the coupler and pulls the care belt downward and slightly forward relative to the patient after the advice by the knee-bending adviser, and thereafter pushes the care belt downward and slightly backward to assist the sitting motion.
Abstract:
A master motion information obtaining unit obtains at least one or more pieces of master motion information including a position, a posture, a speed, and an angular velocity of a master arm mechanism. A physical information obtaining unit obtains physical information of an operator including an arm weight of the operator. A master motion information correcting unit generates corrected master motion information where an amount of correction of the master motion information is corrected such that heavier the arm weight of the operator included in the physical information, larger a movement of a slave arm. A slave controller controls a slave arm mechanism, according to the corrected master motion information.
Abstract:
There is provided an autonomous mobile cleaning apparatus including a controller. The controller obtains information about a first target object having a possibility of putting a main body into a stuck state. After accepting information indicating that the first target object is to be set as a cleaning target object, the controller causes a display to display a first display screen that allows selection of a first movement mode or a second movement mode. The autonomous mobile cleaning apparatus is caused to climb over the first target object in a first process, and caused to clean a first area except for the first target object in a second process. The second process is performed prior to the first process in the first movement mode, and the first process is performed prior to the second process in the second movement mode.
Abstract:
In a standing-up motion assist system for assisting a care receiving person, a care belt includes a first holder that holds a neck part or a back part of the care receiving person, a second holder that holds a lumbar part of the care receiving person, a third holder that connects the first holder and the second holder and holds armpits of the care receiving person, a second connector located at a chest of the care receiving person, and a first connector that connects the first holder and the second holder. A pulling mechanism is connected to the second connector and pulls the second connector. A controller controls the pulling mechanism so as to pull the second connector in a forward and upward direction with reference to the care receiving person, and, thereafter, pull the second connector in a backward and upward direction with reference to the care receiving person.
Abstract:
A master apparatus for a master slave apparatus, the master apparatus controlling a slave apparatus, includes a hand operation mechanism configured to perform operating instructions for opening and closing a hand mechanism including a pair of opening and closing members, the hand mechanism being connected to a slave mechanism, the slave apparatus including the slave mechanism and the hand mechanism; a master mechanism configured to operate the slave mechanism; a master hand controlling device; and an output unit. The hand operation mechanism includes a fixed unit, an opening and closing operation unit, and a slide unit. The slide unit is attached so as to be capable of reciprocating with respect to the fixed unit. The opening and closing operation unit is connected to the slide unit, is capable of reciprocating with respect to the fixed unit, and is openable and closable with respect to the fixed unit. The master hand controlling device controls opening and closing of the pair of opening and closing members on the basis of an opening and closing amount of the opening and closing operation unit. The output unit outputs operation information to the slave mechanism on the basis of the opening and closing amount and a position of the opening and closing operation unit at the fixed unit, the operation information including an angle of the pair of opening and closing members.
Abstract:
A self-driving cleaner includes a drive unit that drives movement of a cleaner body, a control circuit, a camera that captures an image in front, a first sensor that detects an object, and a second sensor that detects a stuck state, and a third sensor that detects a person. The control circuit (a) identifies information about a target object caused the stuck state, (b) receives information indicating whether the target object is to be cleaned, and (c) controls the drive unit and a suction unit, when receiving information indicating the target object to be cleaned, to perform a first mode where the space excluding the target object is cleaned first and, thereafter, the target object is climbed if a person is not detected and perform a second mode where the target object is climbed first and, thereafter, the space excluding the target object is cleaned if a person is detected.
Abstract:
A robot includes a motion mechanism capable of operating in accordance with each of a first motion pattern for supporting a user with a first motion representing a standing-up motion and a second motion pattern for supporting a user with a second motion representing a sitting-down motion, a battery that supplies electric energy to the motion mechanism, a control unit that determines a multiple-motion availability index indicating the availability of an operation in accordance with a multiple-motion pattern including the first and second motion patterns on the basis of the battery level and the amounts of energy charge in the battery required for the operations performed by the motion mechanism in accordance with the first and second motion patterns if the control unit detects that the battery level is a first threshold value or lower, and a presentation unit that presents the multiple-motion availability index determined by the control unit.