Abstract:
The present disclosure relates to an organic electroluminescence element including: a substrate having a light transmissive property; a light diffusion layer; a light transmissive electrode; a light reflective electrode; and a light emitting layer. With regard to the first light emitting layer being the first closest light emitting layer to the light reflective electrode, the relation defined by following expression (2) is satisfied, [ FORMULA 1 ] φ ( λ m ) × λ m 4 π + l + 0.1 2 λ m ≤ n m ( λ m ) × d m ≤ φ ( λ m ) × λ m 4 π + l + 0.5 2 λ m ( 2 ) wherein, λm represents the weighted average emission wavelength, Ø(λm) represents the phase shift, nm(λm) represents the average refractive index of a medium filling a space between the light reflective electrode and the first light emitting layer, and dm represents the distance from the light reflective electrode to the first light emitting layer. m is equal to 1.1 is an integer equal to or more than 0.
Abstract:
An optical scan device includes an optical waveguide array, including a plurality of optical waveguides each of which propagates light along a first direction, that emits a light beam, the plurality of optical waveguides being arranged in a second direction that intersects the first direction, a phase shifter array including a plurality of phase shifters connected separately to each of the plurality of optical waveguides, a control circuit that controls a phase shift amount of each of the plurality of phase shifters and/or inputting of light to each of the plurality of phase shifters and thereby controls a direction and shape of the light beam that is emitted from the optical waveguide array, a photodetector that detects the light beam reflected by a physical object, and a signal processing circuit that generates distance distribution data on the basis of output from the photodetector.
Abstract:
An optical scanning device including: a first mirror having a first reflecting surface; a second mirror having a second reflecting surface; two non-waveguide regions disposed between the first and second mirrors and that are spaced apart from each other in a first direction parallel to at least either the first reflecting surface or the second reflecting surface; and an optical waveguide region disposed between the first and second mirrors and that is sandwiched between the two non-waveguide regions. The optical waveguide region propagates light in a second direction that crosses the first direction. The optical waveguide region and the two non-waveguide regions include respective first regions in which a common material exists. The optical waveguide region or each of the two non-waveguide regions further includes a second region in which a first material having a refractive index different from the refractive index of the common material exists.
Abstract:
An illuminator includes a light-emitting element and a light extraction sheet which transmits light occurring from the light-emitting element. The light-emitting element includes a first electrode having a light transmitting property, a second electrode, and an emission layer between the first and second electrodes. The light extraction sheet includes a light-transmitting substrate having a first principal face and a second principal face, a first light extraction structure on the first principal face side of the light-transmitting substrate, and a second light extraction structure on the second principal face side of the light-transmitting substrate. The first light extraction structure includes a low-refractive index layer and a high-refractive index layer. The second light extraction structure is arranged so that light which is transmitted through the light-transmitting substrate and arrives at an incident angle of 40 degrees to 60 degrees has an average transmittance of 42% or more.
Abstract:
An optical device includes a first waveguide extending in a first direction and a second waveguide connected to the first waveguide. The second waveguide includes a first mirror, a second mirror, and an optical waveguide layer. At least either the first waveguide or the second waveguide has one or more gratings in a part of a connection region in which the first mirror, the second mirror, and the first waveguide overlap one another when seen from an angle parallel with a direction perpendicular to a first reflecting surface of the first mirror. The one or more gratings is at a distance that is longer than at least either a thickness of the first mirror or a thickness of the second mirror in the first direction from an end of the first mirror or the second mirror that is in the connection region.
Abstract:
An optical scan device includes an optical waveguide array, including a plurality of optical waveguides each of which propagates light along a first direction, that emits a light beam, the plurality of optical waveguides being arranged in a second direction that intersects the first direction, a phase shifter array including a plurality of phase shifters connected separately to each of the plurality of optical waveguides, a control circuit that controls a phase shift amount of each of the plurality of phase shifters and/or inputting of light to each of the plurality of phase shifters and thereby controls a direction and shape of the light beam that is emitted from the optical waveguide array, a photodetector that detects the light beam reflected by a physical object, and a signal processing circuit that generates distance distribution data on the basis of output from the photodetector.
Abstract:
An illuminator includes: a light-emitting element and a light-extraction layer which transmits light occurring from the light-emitting element. The light-emitting element includes a first electrode layer on the light-extraction layer side, the first electrode layer having a light transmitting property; a second electrode layer on the opposite side from the light-extraction layer; an emission layer between the first and the second electrode layers; and a feed portion disposed close to the first electrode layer, the second electrode layer, and the emission layer to apply a voltage between the first electrode layer and the second electrode layer. The light-extraction layer has a structure in which a low-refractive index layer having a relatively low refractive index and a high-refractive index layer having a higher refractive index than does the low-refractive index layer are stacked, an interface between the low-refractive index layer and the high-refractive index layer representing bump-dent features.
Abstract:
A light detecting device includes: a filter array including filters two-dimensionally arrayed and an image sensor including light detection elements. Each of first and second filters included in the filters includes a first reflective layer, a second reflective layer, and an intermediate layer therebetween and has a resonance structure having resonant modes whose orders are different from each other. A refractive index and/or a thickness of the intermediate layer in the first and second filters is different depending on the filter. A transmission spectrum of each of the first and second filters has local maximum value of transmittance at each of wavelengths included in a wavelength region, and the wavelengths correspond to the resonant modes, respectively. The image sensor is disposed at a position where the image senor receives passing light that passes through the filter array, to detect components in the wavelengths included in the passing light.
Abstract:
An optical device includes: a first mirror having a first reflecting surface extending in a first direction and a second direction perpendicular to the first direction; a second mirror having a second reflecting surface; an optical waveguide layer that is located between the first and second mirrors and propagates light in the first direction; and an optical element that is disposed on the first mirror and emits incident light in a direction different from an incident direction. The optical element emits (1) incident light entering from the optical waveguide layer through the first mirror in a direction whose first direction component is smaller than that of an incident direction of the incident light by refraction and/or diffraction or (2) incident light entering from the outside in a direction whose first direction component is larger than that of an incident direction by refraction and/or diffraction.
Abstract:
An optical scanning system including an optical scanning device, and a photoreceiver device. The optical scanning device includes: a first waveguide array including a plurality of first waveguides; and a first phase shifter for adjusting phases of light propagating through the plurality of first waveguides to change an emission direction of emission light from the plurality of first waveguides. The photoreceiver device includes: a second waveguide array including a plurality of second waveguides configured to receive reflected light and propagate the received reflected light; and a second phase shifter for adjusting phases of the received reflected light propagating through the plurality of second waveguides to change a reception direction of the reflected light received by the plurality of second waveguides. An array pitch of the plurality of first waveguides in the optical scanning device differs from an array pitch of the plurality of second waveguides in the photoreceiver device.