摘要:
An image mosaicking method includes performing pairwise registration of a plurality of tiles (101), determining absolute homographies for each of the plurality of tiles according to the pairwise registration (102B), and performing a blending of the plurality of tiles to obtain a stitched image according to the absolute homographies (103).
摘要:
An image mosaicking method includes performing pairwise registration of a plurality of tiles (101), determining absolute homographies for each of the plurality of tiles according to the pairwise registration (102B), and performing a blending of the plurality of tiles to obtain a stitched image according to the absolute homographies (103)
摘要:
Automatic prostate localization in T2-weighted MR images facilitate labor-intensive cancer imaging techniques. Methods and systems to accurately segment the prostate gland in MR images are provided and address large variations in prostate anatomy and disease, intensity inhomogeneities, and artifacts induced by endorectal coils. A center of the prostate is automatically detected with a boosted classifier trained on intensity based multi-level Gaussian Mixture Model Expectation Maximization (GMM-EM) segmentations of the raw MR images. A shape model is used in conjunction with Multi-Label Random Walker (MLRW) to constrain the seeding process within MLRW.
摘要:
A method and system for integrating radiological and pathological information for cancer diagnosis, therapy selection, and monitoring is disclosed. A radiological image of a patient, such as a magnetic resonance (MR), computed tomography (CT), positron emission tomography (PET), or ultrasound image, is received. A location corresponding to each of one or more biopsy samples is determined in the at least one radiological image. An integrated display is used to display a histological image corresponding to the each biopsy samples, the radiological image, and the location corresponding to each biopsy samples in the radiological image. Pathological information and radiological information are integrated by combining features extracted from the histological images and the features extracted from the corresponding locations in the radiological image for cancer grading, prognosis prediction, and therapy selection.
摘要:
Automatic prostate localization in T2-weighted MR images facilitate labor-intensive cancer imaging techniques. Methods and systems to accurately segment the prostate gland in MR images are provided and address large variations in prostate anatomy and disease, intensity inhomogeneities, and artifacts induced by endorectal coils. A center of the prostate is automatically detected with a boosted classifier trained on intensity based multi-level Gaussian Mixture Model Expectation Maximization (GMM-EM) segmentations of the raw MR images. A shape model is used in conjunction with Multi-Label Random Walker (MLRW) to constrain the seeding process within MLRW.
摘要:
Values for ultrasound acquisition parameters are altered in a manifold space. The number of parameters to be set is reduced using a manifold. Virtual parameters different than the acquisition parameters are used to alter the greater number of acquisition parameters. In a further use, optimum image settings may be obtained in an automated system by measuring image quality for feeding back to virtual parameter adjustment.
摘要:
An MR imaging system uses multiple RF coils for acquiring corresponding multiple image data sets of a slice or volume of patient anatomy. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for weighted combination of k-space data of the multiple image data sets for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The image data processor uses the calibration data set in generating a first MR image data set, deriving the parameters of a probability distribution in response to the first set of weights and the first MR image data set and deriving a second set of weights and second MR image data set together using the probability distribution.
摘要:
An MR imaging system uses the multiple RF coils for acquiring corresponding multiple image data sets of the slice. An image data processor comprises at least one processing device conditioned for, generating a composite MR image data set representing a single image in a single non-iterative operation by performing a weighted combination of luminance representative data of individual corresponding pixels of the multiple image data sets in providing an individual pixel luminance value of the composite MR image data set. The image data processor reduces noise in the composite MR image data set by generating a reduced set of significant components in a predetermined transform domain representation of data representing the composite image to provide a de-noised composite MR image data set. An image generator comprises at least one processing device conditioned for, generating a composite MR image using the de-noised composite MR image data set.
摘要:
An MR imaging system uses multiple RF coils for acquiring corresponding multiple image data sets of a slice or volume of patient anatomy. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for weighted combination of k-space data of the multiple image data sets for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The image data processor uses the calibration data set in generating a first MR image data set, deriving the parameters of a probability distribution in response to the first set of weights and the first MR image data set and deriving a second set of weights and second MR image data set together using the probability distribution.
摘要:
A method for removing noise from an image includes receiving image data including a plurality of pixels. A graph including a plurality of nodes and a plurality of edges interconnecting the nodes is formulated. Each pixel of the image data is represented as a node of the graph and each edge of the graph is assigned a weight based on a penalty function applied to the nodes connected by the edge where the penalty function is less when a value of a given pixel of the plurality of pixels is between or equal to the values of two neighboring pixels than when the value of the given pixel is either greater than or less than the values of both of the two neighboring pixels. A total penalty of the graph is minimized. A denoised image is provided based on the total penalty-minimized graph.