Abstract:
This invention relates to an ionizing radiation detection device including a detector (1) of semi-conductor material intended to be biased thanks to electrodes (3.1, 3.2), among which reading electrodes (3.2) connected to a reading circuit (2) process signals they provide to reject those causing a poor spectrometric response, that is those affected by an induction share and possibly those affected by a charge or electronic noise share.
Abstract:
A device that processes a signal delivered by a radiation detector includes a circuit that delivers a voltage pulse whose amplitude is proportional to a charge detected by the radiation detector. The device also includes an analog to digital converter to digitize the voltage pulse at a given sampling frequency and delivers a corresponding digital signal to a processing circuit. The processing circuit reads the digital signal, computes a temporal variation rate of the digital signal and captures the digital signal when the temporal variation reaches a threshold.
Abstract:
This device for processing and digitizing an energy spectrum of a radiation, comprises a charge preamplification circuit of the integrating circuit type, suitable for being connected to a semiconductor detector; a lag line energy measurement circuit connected to the output of the preamplification circuit; and a sampler connected to the output of the energy measurement circuit. It further comprises a synchronization circuit a current pulse measurement circuit connected to the output of the preamplification circuit and calculating the difference between the output and a differential of the output of the preamplification circuit; and a discrimination circuit forming a binary signal according to the output of the pulse measurement circuit said logic signal controlling the sampling times of the sampler.
Abstract:
A method for exploiting a signal provided by a detector is disclosed. For one embodiment, the time spent by at least one part of the signal above a value S0 of a first threshold is determined. The charge corresponding to the part of the signal during the time spent above the value S0 of the first threshold is determined. A new value S′0 of the first threshold as a function of the charge and the time spent above the value S0 of the first threshold is determined. The steps of determining the time spent by at least one part of the signal above a value S0 of a first threshold and determining the charge corresponding to the part of the signal during the time spent above the value S0 of the first threshold are reiterated at least once using the new value of the first threshold.
Abstract:
A method for characterizing nature of a material, including: providing at least one sample of the material between an X-ray source and a detector; using the X-ray source to make N X-radiation spectra transmitted through the material, each for a time; calculating transmission function of the material as a function of energy or the detection channel; and in each of at least two energy zones, calculating the integral of the transmission function, thus forming at least a first transmission coefficient and a second transmission coefficient.
Abstract:
A device for processing a signal (i) derived from a particular detector, the device including an integrator for measuring the total charge transported by an input signal (i2) feeding the integrator for a predetermined time interval. The device further includes a plurality of units for receiving detector signal (i) derived from the particle detector, reducing the background noise present in the detector signal (i), and producing the input signal (i2). The invention is applicable to various devices and appliances for measuring flow of particles such as photons.
Abstract:
An apparatus adapted to measure of current pulses that are very brief (a few nanoseconds) and of very low amplitude (a few microamps), such as those that can emanate from a photodetector used for the optical transmission of data at very high speed, or from a photodetector (photodiode or photoconductor) subject to a radiation that is of pulsed nature (in particular: X, gamma and other radiations). The circuit includes an integration stage (IT), a differentiation stage (DR), and a subtraction stage (SS). The time constants Rp.Cint and R2.C2 of the integration and differentiation stages are preferably equal.
Abstract:
An ionizing radiation detection device including a detector of semi-conductor material intended to be biased thanks to electrodes, among which reading electrodes connected to a reading circuit process signals they provide to reject those causing a poor spectrometric response, that is those affected by an induction share and possibly those affected by a charge or electronic noise share.
Abstract:
An integrated circuit intended to be assembled with an electromagnetic radiation detector, the integrated circuit comprising a device for processing signals stemming from the detector, the processing device being covered with at least one conductive plate for protection against electromagnetic radiation, intended to be placed between said detector and said integrated circuit, said conductive plate including one or more apertures letting through conductive elements providing an electrical connection between the processing device and the detector.
Abstract:
This device for processing and digitizing an energy spectrum of a radiation, comprises a charge preamplification circuit of the integrating circuit type, suitable for being connected to a semiconductor detector; a lag line energy measurement circuit connected to the output of the preamplification circuit; and a sampler connected to the output of the energy measurement circuit. It further comprises a synchronization circuit a current pulse measurement circuit connected to the output of the preamplification circuit and calculating the difference between the output and a differential of the output of the preamplification circuit; and a discrimination circuit forming a binary signal according to the output of the pulse measurement circuit said logic signal controlling the sampling times of the sampler.