摘要:
A method and apparatus for detecting heartbeats obtains ECG data from a plurality of ECG waveforms, which are in turn obtained from signals received from a plurality of ECG electrodes. QRS detection logic detects heartbeats in the ECG data. This logic calculates an activity function from a subset of the plurality of ECG waveforms determined to be least noisy, and uses this activity function to search for heartbeats. The QRS detection logic allows for true heartbeats to be detected while discarding false "noise" beats.
摘要:
A method and apparatus for obtaining heartbeat measurements obtains ECG data from a plurality of ECG waveforms, which are in turn obtained from signals received from a plurality of ECG electrodes. QRS detection logic detects heartbeats in the ECG data. Classification logic classifies heartbeats into categories based on shape and/or timing. Alignment logic aligns the heartbeats. Representative heartbeat creation logic creates a representative heartbeat from the aligned heartbeats. Measurement logic measures various aspects of the representative heartbeat. This logic analyzes the ECG waveforms to determine an earliest QRS onset and latest QRS offset, and uses these values to perform a variety of measurements. This results in robust measurements even in very noisy environments. The representative heartbeat is displayed, either alone or with heart rate and/or other measurement information, to the cardiologist or medical professional for diagnosis of the condition of the patient's heart, such as a diagnosis of coronary artery disease, based on finding a depressed ST segment in the representative heartbeat of a patient undergoing a stress or exercise test.
摘要:
A method and apparatus for calculating a heart rate obtains ECG data from a plurality of ECG waveforms, which are in turn obtained from signals received from a plurality of ECG electrodes. Heart rate calculation logic calculates the patient's heart rate. This logic determines the intervals between the heartbeats detected in the ECG data, discards a percentage of the shortest and longest intervals, and averages the remaining intervals to arrive at the patient's heart rate. This results in a robust calculation of the heart rate even in the presence of noise falsely detected as heartbeats and missed beats, both of which are common in noisy environments. The heart rate is displayed to the cardiologist or medical professional for diagnosis of the condition of the patient's heart.
摘要:
A method and apparatus for classifying heartbeats obtains ECG data from a plurality of ECG waveforms, which are in turn obtained from signals received from a plurality of ECG electrodes. QRS detection logic detects heartbeats in the ECG data. Classification logic classifies the detected heartbeats into categories based on shape and/or timing. This classification is done by comparing each heartbeat against a group of templates corresponding to one or more heartbeat classifications. The templates are updated to track changes in the morphology of the heartbeats. The heartbeat classification is displayed to the cardiologist or medical professional for diagnosis of the condition of the patient's heart.
摘要:
A method and apparatus for creating a representative heartbeat obtains ECG data from a plurality of ECG waveforms, which are in turn obtained from signals received from a plurality of ECG electrodes. QRS detection logic detects heartbeats in the ECG data. Classification logic classifies heartbeats into categories based on shape and/or timing. Alignment logic aligns the heartbeats. This logic slides the heartbeats occurring at various times across a stationary alignment template to calculate when the heartbeats are best aligned, and performs adjustments to reduce the effects of noise or jitter on the different ECG waveforms. Representative heartbeat creation logic creates a representative heartbeat from the aligned heartbeats. This logic time slices through the aligned heartbeats, discarding a percentage of the smallest and largest magnitudes of the aligned heartbeats at each instance of time, and averaging the remaining magnitudes to produce a representative heartbeat. This trimmed averaging technique results in a high quality representative beat, since samples from noise and misclassified beats are discarded. The representative heartbeat is displayed, either alone or with head rate and/or other measurement information, to the cardiologist or medical professional for diagnosis of the condition of the patient's head, such as a diagnosis of coronary artery disease, based on finding a depressed ST segment in the representative heartbeat of a patient undergoing a stress or exercise test.
摘要:
A vector method for monitoring a subject's sleep-disordered breathing utilizing a single, anatomy-attached (anatomically outside or implanted inside), three-orthogonal-axis accelerometer(s), including the steps of (1) collecting from a sleeping subject three-orthogonal-axis data relating to at least one of sound data, subject posture, subject activity, snoring, and respiration, and (2) following such collecting, processing and analyzing collected data to detect associated, disordered breathing including assessing the presence of at least one of (a) sleep-disordered breathing generally, (b) sleep apnea specifically, and (c) differentiation between central and obstructive sleep apnea. Further involved is the acquiring of ECG data, and that the mentioned processing and analyzing include recognition of such acquired ECG data.
摘要:
A method utilizing computer processing for detecting, within a cardiac cycle, the earliest onset of global, Q-onset, ventricular depolarization in the presence of an operating pacemaker. The method, in general terms, features (a) gathering a plurality of ECG-obtained QRS heart-cycles waveforms, (b) identifying and categorizing of evidences and specific timings therein of intrinsic Q-onset and pacemaker spike events, (c) looking in a single, selected QRS waveform, between specific, defined first and second time marks, for the most significant slope change appearing in that waveform, and (d) designating to be the correct Q-onset that event which immediately precedes that slope change.
摘要:
A defibrillator having infrared communication capability is provided. The wireless communications capability is implemented using infrared light or RF communications and standardized communications protocols such as the IrDA protocol to allow for ready communication between defibrillators such as during handoffs of patient along the Chain of Survival. The wireless communications network also allows for communications between a defibrillator and a host computer such as a palmtop for incident report generation after each handoff. Another embodiment of the present invention provides for a defibrillator having an infrared mode switch to allow for restricted access to advanced cardiac life support (ACLS) features of the defibrillator. A further embodiment of the present invention provides for a defibrillator having a remote training mode that is implemented via wireless communications. Another embodiment of the present invention provides for a defibrillator test system that is implemented via wireless communications. A further embodiment of the present invention provides for a live ECG telemetry data link using the wireless communications system.
摘要:
A dual-mode defibrillator has ECG electrodes connected to an ECG front end for producing signals for the controller to use in determining the defibrillator operation in accordance with the manual and automatic procedures stored in a memory. The controller provides appropriate signals to the high voltage delivery system which when energized, applies defibrillation energy to the electrodes.
摘要:
A computer-based detection method employable with a sleeping subject for aiding in the differential-character diagnosis and treatments of apneic events includes gathering heart-sound data, including S1 data and S2 data. A combined time-frequency-intensity (TFI) analysis, of the gathered data is performed, in a continuous manner, over a selected time period. Based on the performing and the performed TFI analysis, an output is produced which is indicative of the presence and character of any detected apneic event.