摘要:
A fuel cell system that determines the phase transition from water to gas through a bleed/drain valve in a water separation device. The fuel cell system includes a fuel cell stack having an anode side and a cathode side. An injector injects hydrogen gas into the anode side of the fuel cell stack. The water separation device receives an anode exhaust gas from the anode side of the fuel cell stack, where the water separation device includes a water holding reservoir. A controller controls the injector and the bleed/drain valve and determines when the bleed/drain valve transitions from draining water to bleeding the anode exhaust gas by comparing the flow rate through the water separation device and the flow rate through the injector.
摘要:
A fuel cell system that employs an injector/ejector for providing fresh hydrogen and anode recirculation gas to the anode side of a fuel cell stack. The injector/ejector is operated with a variable frequency so that the injector open time at low stack current densities is long enough to allow a pressure drop to be provided in the anode flow channels to push out water that may have accumulated therein. In one embodiment, the injector/ejector control provides a minimum pulse width per cycle and a maximum frequency so that as the stack current density decreases below a certain value the frequency decreases from the maximum frequency to maintain the pulse width constant at the minimum pulse width.
摘要:
A method for determining the amount of fuel flow from a high pressure gas tank to the anode side of a fuel cell stack through pulsed injector. The anode sub-system pressure is measured just before the injector pulse and just after injector pulse and a difference between the pressures is determined. The difference between the pressures, the volume of the anode sub-system, the ideal gas constant, the anode sub-system temperature, the fuel consumed from the reaction in the fuel cell stack during the injection event and the fuel cross-over through membranes in the fuel cells of the fuel cell stack are used to determine the amount of hydrogen gas injected by the injector.
摘要:
A method for adaptively controlling a fuel delivery injector in a fuel cell system, including determining a feed-forward bias for the fuel delivery injector, determining an injector flow set-point for the fuel delivery injector, monitoring stack current, determining a transient pressure correction for the stack and correcting the injector flow set-point.
摘要:
A method for adaptively controlling a fuel delivery injector in a fuel cell system, including determining a feed-forward bias for the fuel delivery injector, determining an injector flow set-point for the fuel delivery injector, monitoring stack current, determining a transient pressure correction for the stack and correcting the injector flow set-point.
摘要:
A combined water drain and diluent gas purge valve routes fluid from the anode side of a fuel cell to the cathode inlet. When a purge of diluent gas is requested, the valve opens, draining any liquid present in the sump of a water separation device, for example. After the liquid has drained, the diluent gas is purged. An anode bleed model using fuel injector feedback can determine the amount of gas exiting the valve, and can request the valve to close once the required amount of diluent is purged. During operation, an amount of hydrogen may exit the valve. Hydrogen passing through the valve can be catalytically consumed once it reaches the cathode electrode, causing the cathode exhaust, and the fuel cell exhaust to have a reduced hydrogen content.
摘要:
A combined water drain and diluent gas purge valve routes fluid from the anode side of a fuel cell to the cathode inlet. When a purge of diluent gas is requested, the valve opens, draining any liquid present in the sump of a water separation device, for example. After the liquid has drained, the diluent gas is purged. An anode bleed model using fuel injector feedback can determine the amount of gas exiting the valve, and can request the valve to close once the required amount of diluent is purged. During operation, an amount of hydrogen may exit the valve. Hydrogen passing through the valve can be catalytically consumed once it reaches the cathode electrode, causing the cathode exhaust, and the fuel cell exhaust to have a reduced hydrogen content.
摘要:
A system and method for preventing anode reactant starvation. The system includes a hydrogen source, an anode bleed valve, and a cell voltage monitor. The system also includes an anode sub-system pressure sensor and a controller configured to control the anode sub-system. The controller determines the average cell voltage and estimates the hydrogen molar fraction and/or nitrogen molar fraction in the anode sub-system. The controller also receives measurement data from the cell voltage monitor and the pressure sensor, and determines whether there is a decrease in the minimum cell voltage in response to changes in the anode pressure. If the controller detects a decrease in the minimum cell voltage in response to changes in the anode pressure, the controller corrects for the decrease by increasing anode pressure and/or by decreasing the molar fraction of nitrogen in the anode sub-system.
摘要:
A method for determining a rate of accumulation of nitrogen in an anode side of a fuel cell stack. The method includes determining a concentration of nitrogen in an anode loop and determining a number of moles of nitrogen in the anode loop. The method also includes determining a rate of accumulation of nitrogen in the anode loop and determining a permeability factor of nitrogen through fuel cell membranes in the fuel cell stack using the determined rate of accumulation of nitrogen in the anode loop.
摘要:
A system and method for controlling hydrogen gas flow to an anode side of a fuel cell stack using a pressure regulator in the event that an injector that normally injects the hydrogen gas into the fuel cell stack has failed in a stuck open position. During normal operation, the control of the injector is determined based on the pressure of an anode sub-system and the position of the pressure regulator is determined based on a supply pressure between the pressure regulator and the injector. If it is determined that the injector is stuck in an open position, then the position of the pressure regulator is controlled to the anode pressure instead of the supply pressure. If the pressure regulator is an electrical pressure regulator, then it is pulsed to mimic normal system operation. Alternately, another valve, such as a shut-off valve, can be employed to provide the flow pulsing.