摘要:
A method and system for upgrading service to an optical network terminal among a plurality of optical network terminals on a passive optical network. The upgrade enables bidirectional communications between a central office and the optical network terminal over dedicated downstream and upstream wavelength channels outside the downstream and upstream wavelength bands associated with the passive optical network. The optical network terminal to receive upgraded service is disconnected from a passive optical splitter at a remote node serving the optical network terminal, and optically coupled to a port of the multi-port arrayed waveguide grating at the remote node. Wavelength taps are provided at the central office and the remote node to facilitate multiplexing and demultiplexing the dedicated downstream and upstream channels with the downstream and upstream wavelength bands associated with the passive optical network. In this manner, certain users on the passive optical network may receive service upgrades to wavelength specific services without affecting other users who remain on the passive optical network.
摘要:
An optical device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
摘要:
A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate. Recessed areas may be provided in one or the other substrate surface reducing crosstalk in a completed three dimensional crossover device. Three dimensional optical couplers may comprise waveguides of identical or dissimilar characteristics. Moreover, three dimensional optical switches may be formed using the proposed flip and bond assembly process.
摘要:
A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.
摘要:
A method for fabricating optical devices comprises the steps of preparing a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or be curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may crossover one another and be in proximate relationship along a region of each. As a result, three dimensional optical devices are formed avoiding conventional techniques of layering on a single substrate wafer. Optical crossover angles may be reduced, for example, to thirty degrees from ninety degrees saving substrate real estate. Recessed areas may be provided in one or the other substrate surface reducing crosstalk in a completed three dimensional crossover device. Three dimensional optical couplers may comprise waveguides of identical or dissimilar characteristics. Moreover, three dimensional optical switches may be formed using the proposed flip and bond assembly process.
摘要:
A four-port wavelength-selective crossbar switch generates an add/drop wavelength signal from a wave division multiplexed (WDM) signal using a plurality of double-sided reflectors that selectively reflects a selected wavelength channel signal of the WDM signal through optical circulators to provide low crosstalk between the dropped and added wavelength signals. The switch also reduces the number of WDM MUX-DEMUX required to one half that compared to a traditional approach. Furthermore, the switch can be designed to be wavelength cyclic with individual free spectral ranges that can be independently set to either through or add/drop states.
摘要:
A method and memory medium in a wavelength division multiplexing (WDM) network that communicates multiplexed signals representing a plurality of communication channels to determine received signal quality are disclosed. Generally, the signals format the plurality of communication channels to impart a distinctive noise profile in time or frequency for each channel; and collectively process the channels at a digital signal processing device to measure the signal-to-noise ratio.
摘要:
A method and memory medium in a wavelength division multiplexing (WDM) network that communicates multiplexed signals representing a plurality of communication channels to determine received signal quality are disclosed. Generally, the signals format the plurality of communication channels to impart a distinctive noise profile in time or frequency for each channel; and collectively process the channels at a digital signal processing device to measure the signal-to-noise ratio.
摘要:
A bidirectional optical communications system that is operable to dynamically allocate wavelengths for transmission in either direction in an optical fiber. The dynamic allocation is controlled by programmable optical devices. The programmable optical devices may be well known programmable devices such as wavelength selective switches and wavelength blockers or any other programmable optical device capable of dynamically allocating wavelengths between the two directions in the optical fiber. In addition, the programmable optical devices may be any combination of such wavelength selective switches, wavelength blockers or other programmable optical devices with other optical devices such as optical circulators, gain blocks, add/drop multiplexers, or fixed optical filters. Such a bidirectional optical communications system enables the dynamic allocation of bandwidth in an optical fiber without the need to replace components, such as fixed optical filters, and without disturbing communications on all the wavelengths transmitted in the optical fiber.
摘要:
A method for fabricating an optical device wherein the device comprises a first substrate wafer with at least one buried optical waveguide on an approximately flat planar surface of the substrate and a second substrate wafer with at least a second buried optical waveguide. The waveguides so formed may be straight or curved along the surface of the wafer or curved by burying the waveguide at varying depth along its length. The second wafer is turned (flipped) and bonded to the first wafer in such a manner that the waveguides, for example, may form an optical coupler or may cross over one another and be in proximate relationship along a region of each. As a result, three-dimensional optical devices are formed avoiding the convention techniques of layering on a single substrate wafer.