摘要:
Embodiments of apparatuses and methods for reducing the uncorrectable error rate in a lockstepped dual-modular redundancy system are disclosed. In one embodiment, an apparatus includes two processor cores, a micro-checker, a global checker, and fault logic. The micro-checker is to detect whether a value from a structure in one core matches a value from the corresponding structure in the other core. The global checker is to detect lockstep failures between the two cores. The fault logic is to cause the two cores to be resynchronized if there is a lockstep error but the micro-checker has detected a mismatch.
摘要:
Embodiments of an invention for synchronizing redundant processors using state history are disclosed. In one embodiment, an apparatus includes two processors, state storage for each processor, and control logic. Each processor is to execute the same instructions. The state storage is to store compressed processor state information for each instruction executed by the processors. The control logic is to synchronize the two processors based on entries from the state storage.
摘要:
Embodiments of an invention for synchronizing redundant processors using state history are disclosed. In one embodiment, an apparatus includes two processors, state storage for each processor, and control logic. Each processor is to execute the same instructions. The state storage is to store compressed processor state information for each instruction executed by the processors. The control logic is to synchronize the two processors based on entries from the state storage.
摘要:
Methods of operating two or more devices in lockstep by generating requests at each device, comparing the requests, and forwarding matching requests to a servicing node are described and claimed. A redundant execution system using the methods is also described and claimed.
摘要:
A technique for demand-based error correction. More particularly, at least one embodiment of the invention relates to a technique to reduce storage overhead of cache memories containing error correction codes (ECC) while maintaining substantially the same performance of the cache.