摘要:
This invention provides a design for spirally wound electrochemical cells which improves their safety during abuse such as voltage reversal. The invention comprises coupling a first segment of inert conductive metal to the cathode and a dendrite target comprised of an inert conductive metal to the anode. When these electrodes are spirally wound together the two segments of inert conductive metal face each other, held in physical separation by the separator, whereby during voltage reversal a dendrite grows from said first segment to said dendrite target.
摘要:
A non-aqueous Li/MnO.sub.2 cell having an electrolyte which improves the capacity thereof and which consists of an electrolyte salt such as LiClO.sub.4 dissolved in 1,3 dioxolane.
摘要:
This invention relates to an electrochemical cell having spirally wound electrodes and an electrolyte which enhances plating of the anode metal during voltage reversal. The safety of such cells is improved by concentrating the current, during voltage reversal, between an outer segment of the anode and a metal sheet connected to the cathode whereby anode metal plates only onto the metal sheet. Thus, the hazardous condition of plating anode metal onto the cathode is avoided.
摘要:
The safety of a non-pressurized electrochemical cell such as a Li/MnO.sub.2 cell, having a safety pressure vent and an organic electrolyte solvent is enhanced by, in conjunction with said vent, providing said organic electrolyte solvent with at least 80% by volume of a volatile component, such as dimethoxyethane, having a boiling point between 30.degree. C. to 130.degree. C. Upon cell venting, under abuse conditions, the cell is thereby rapidly evacuated and safely rendered inoperable under further abuse conditions.
摘要:
A process for heat treating the metal sheeting forming the anode casing of a zinc/air depolarized cell before anode material comprising zinc is inserted into the anode casing. The anode casing has a layer of copper on its inside surface. The process comprises heat treating the metal sheeting forming the anode casing by passing a gas at a temperature between about 200° C. and 700° C., preferably between about 300° C. and 600° C. in contact therewith to form a heat treated sheeting and then cooling said heat treated sheeting to ambient temperature. The anode casing is stored away from atmospheric air until anode active material is inserted therein during cell assembly. The heat treating process significantly reduces gassing during cell discharge and storage. The cell's capacity and performance is improved when the cell's anode comprises particulate zinc (or zinc alloy) plated with indium, preferably between about 200 and 600 ppm indium. The need to add mercury to the anode material is reduced and can be eliminated.
摘要:
A lithiated manganese dioxide for use in primary lithium electrochemical cells. The lithiated manganese dioxide is prepared by stepwise treatment with a liquid source of lithium cations that can include an aqueous solution of a lithium base or a low melting point lithium salt resulting in formation of a lithiated manganese dioxide product. Lithium cations in the lithium base or molten lithium salt can be ion-exchanged with hydrogen ions in the manganese dioxide crystal lattice and additional lithium ions reductively inserted into the lattice during subsequent heat-treatment to form the lithiated manganese dioxide product LiyMnO2−&dgr;. The primary lithium cell utilizing the lithiated manganese dioxide product as active cathode material exhibits increased operating voltage and enhanced high rate, low temperature, and pulse discharge performance compared with untreated manganese dioxide.
摘要翻译:用于一次锂电化学电池的锂化二氧化锰。 锂化二氧化锰通过用锂阳离子的液体源逐步处理制备,所述锂阳离子可以包括锂碱或低熔点锂盐的水溶液,从而形成锂化二氧化锰产物。 在锂基或熔融锂盐中的锂阳离子可以在二氧化锰晶格中与氢离子进行离子交换,并且在随后的热处理期间还原性地插入晶格中的另外的锂离子形成锂化二氧化锰产物Li y MnO 3。 与未处理的二氧化锰相比,利用锂化二氧化锰产品作为活性阴极材料的一次锂电池表现出增加的工作电压和增强的高速率,低温和脉冲放电性能。
摘要:
A non-aqueous electrolyte cell particularly one containing a beta manganese dioxide cathode wherein the cathode is normally rigorously heat treated to drive off contained water. The heat treatment is substantially reduced or eliminated (allowing up to 2% water by weight of the cathode to remain in the cell) by utilizing as an electrolyte salt in the cell, a salt which reacts with water to only form a weak oxidizing agent which in turn does not react with the electrolyte solvent to form a gaseous product. Alternatively, an electrolyte solvent is initially utilized in the cell, which solvent does not react with strong oxidizing agents to form a gaseous product.
摘要:
A fluorosurfactant, preferably an anionic fluorosurfactant, can be added to the anode mixture of a zinc/air cell. A desirable surfactant is an anionic fluoroaliphaticcarboxylate. The addition of the surfactant reduces gassing and improves cell performance. The anode casing can also be treated with the surfactant solution prior to inserting the anode mixture therein. The anode casing of a zinc/air depolarized cell can also be heat treated after the casing has been formed but before anode material comprising zinc is inserted therein. The anode casing has a layer of copper on its inside surface. The process comprises heat treating the anode casing by passing a gas at a temperature between about 200° C. and 700° C., preferably between about 300° C. and 600° C. in contact therewith to form a heat treated anode casing and then cooling said heat treated anode casing to ambient temperature. The heat treated anode casing is stored away from atmospheric air until anode active material is inserted therein during cell assembly. The heat treating process significantly reduces gassing during cell discharge and storage and eliminates the need to add mercury to the anode material.
摘要:
A lithium ion cell having an amount of a Group 1 element between the positive electrode and the negative electrode is described. The Group 1 element can be on an surface of an electrode separator as a deposit. The Group 1 element can increase the charging capacity of the cell, eliminate the irreversible capacity of the cell, improve the rechargeable cell cyclability, or increase the charging reversibility of the cell.
摘要:
The invention relates to alkaline cells containing manganese dioxide cathode active material. A substance selected from the group of compounds CaWO.sub.4, MgTiO.sub.3, BaTiO.sub.3, CaTiO.sub.3, ZnMn.sub.2 O.sub.4, and Bi.sub.12 TiO.sub.20 is added to the cathode of conventional alkaline cells typically having an anode comprising zinc and cathode comprising manganese dioxide and an alkaline electrolyte. The additive increases the service life of the cell.
摘要翻译:本发明涉及含有二氧化锰正极活性物质的碱性电池。 将一种选自化合物CaWO 4,MgTiO 3,BaTiO 3,CaTiO 3,ZnMn 2 O 4和Bi 12 TiO 20的物质加入常规碱性电池的阴极中,通常具有包含二氧化锰和碱性电解质的锌和阴极的阳极。 添加剂增加了电池的使用寿命。