Abstract:
A rechargeable lithium battery includes tape, an electrode assembly, and a case housing the electrode assembly. The electrode assembly and the internal surfaces of the case are thermally adhered by the tape adhered to an external surface of the electrode assembly.
Abstract:
Provided is a lithium ion secondary battery that enables lithium ion replenishment in a short period of time. The lithium ion secondary battery disclosed herein is provided with a wound electrode assembly in which a long sheet-shaped positive electrode and a long sheet-shaped negative electrode are wound such that the negative electrode is positioned on the outer side of the positive electrode; a third electrode that is disposed outside the wound electrode assembly and that has an Li supply source capable of supplying lithium ion; and a porous insulating film that is disposed between the wound electrode assembly and the third electrode and that is formed from a material usable as a separator in a battery. In this lithium ion secondary battery, the third electrode has a portion facing, across the insulating film, an outer surface of the negative electrode that constitutes the outermost circumference of the negative electrode of the wound electrode assembly, and has a portion facing, across the insulating film, a wound electrode assembly open end face that communicates with the interior of the wound electrode assembly and is an end face of the wound electrode assembly along the direction of the winding axis.
Abstract:
An alkaline battery including a positive electrode of a hollow cylindrical shape disposed in contact with an inner surface of a bottomed cylindrical battery case, a gelled negative electrode, a separator, and an alkaline electrolyte. The separator includes a cylindrical separator disposed in contact with the inner side surface of the positive electrode, and a bottom separator covering an opening of the cylindrical separator in the bottom side of the battery case. The bottom of the battery case includes: an annular base portion for supporting the positive electrode; an annular intermediate portion provided inwardly of the base portion, for supporting the bottom separator; and a terminal portion protruding outwardly from the intermediate portion. The intermediate portion has an inclined surface on the inner bottom surface of the battery case, the inclined surface being inclined downwardly from the base portion toward the terminal portion.
Abstract:
An electrochemical cell including a housing configured to receive a cell element. The housing has an electrically-insulating material including metal oxide particles provided on at least a portion of an inner surface thereof to prevent electrical contact between the housing and the cell element. A method of manufacturing an electrochemical cell including applying an electrically-insulating material including metal oxide particles to an inner surface of a housing for an electrochemical cell and inserting a cell element into the housing.
Abstract:
A battery is fabricated on the basis of at least one of the following four concepts, i.e., lead terminals passing through a package not lower than the uppermost surface of an electrolyte cell, lead terminals projecting from a package in directions opposite to each other, a film package with a crushed portion expandable for accumulating gas and sheets of gas barrier sealant for keeping the boundaries between component parts of a package sealed; the seal is hardly broken so that the battery is durable and highly reliable.
Abstract:
A packaging material for battery cases according to the present invention including a heat resistant resin oriented film layer 2 constituting an outer layer, a thermoplastic resin non-oriented film layer 3 constituting an inner layer, and an aluminum foil layer 4 disposed between both the film layers is characterized in that as the heat resistant resin oriented film, a heat resistant resin oriented film having a shrinkage percentage of 2 to 20% is used. With this packaging material, excellent formability can be secured without coating slip characteristics imparting components and sufficient volumetric energy density can be obtained.
Abstract:
An electrochemical device, such as an alkaline battery, that is excellent in leakage-resistance and storage characteristics is provided by controlling at least one of the following two conditions with respect to at least the inner side surface of a battery case comprising a nickel plated steel plate. The two conditions are: (1) the intensity ratio of Fe to Ni (IFe/Ni) as determined by electron probe microanalysis; and (2) the ratio of the area with an intensity ratio of Fe to Ni (IFe/Ni) of greater than 1.0 as determined by electron probe microanalysis to the whole area.
Abstract:
The present invention relates to a method of fabricating a zinc-air cell and a zinc-air cell fabricated using the same. The zinc-air cell includes a cup adapted to function as a sealant of the cell, a film adapted to function as an anode of the cell and bonded on the cup, wherein the film has a first surface with a hydrophobic property and a second surface with ion permeability, and the second surface comes in contact with the cup, and a zinc gel adapted to function as a cathode of the cell and filled between the cup and the sealant. The method of fabricating a zinc-air cell includes preparing a cup having a central portion of a downward depressed shape and functioning as a sealant of the cell, bonding a film adapted to function as an anode of the cell on the cup, and filling a zinc gel, which functions as a cathode of the cell, in a space between the cup and the sealant.
Abstract:
A battery pack configured for lithium ion battery cells includes an inner bonding layer, an intermediate stainless steel layer and an outer protective layer. Due to the arrangement of the intermediate stainless steel layer, the lithium ion battery cell having the battery pack in accordance with the present invention has desirable strength and energy density.
Abstract:
The invention provides a plated steel plate for a cell can in which stable and good electrical contact can be provided on an outer surface of the cell can, and the evolution of gas within a battery can be suppressed by reducing damage to a plated surface of the steel plate when the cell can is formed by drawing press. In this manner, it is possible to provide a battery and an alkaline dry battery that can realize stable electrical contact with devices and reduce the evolution of gas. In a plated steel plate 110 for a cell can both of whose surfaces are plated mainly with nickel, one surface of a steel plate 111 that is a plated substrate is a dull finished surface 111a, and another surface thereof is a bright finished surface 111b.