摘要:
Improved circular force generator devices (100), systems, and methods for use in an active vibration control system are disclosed. The present subject matter can include improved rotary actuator devices, systems, and methods in which a center shaft (120) is positioned in a fixed relationship with respect to a component housing (114). At least one movable body can be positioned in the component housing and rotatably coupled to the center shaft by a radial bearing (130), the at least one movable body comprising a motor (110) and at least one eccentric mass (150). With this configuration, the motor can be configured to cause rotation of the movable body about the center shaft to produce a rotating force with a controllable rotating force magnitude and a controllable rotating force phase.
摘要:
Improved active vibration control (AVC) devices (20), systems, and related methods are provided herein. An AVC device (20) includes a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors (22), one or more actuators (26), and a controller (24) adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor (22), receiving real-time aircraft information from an avionics system (40), adjusting at least one control parameter used in a control algorithm, and generating a force command.
摘要:
A method of stabilizing a vehicle is provided. The vehicle is travelling at a forward speed and a lateral speed, and comprises a lateral acceleration sensor, a yaw sensor adapted to detect an actual yaw rate of the vehicle around a central axis, a steering mechanism adapted to steer the vehicle by a steered yaw rate, and an electronic stability control system. The method comprises determining the forward speed of the vehicle with the electronic stability control system, determining a yaw error rate based upon a difference between the actual yaw rate of the vehicle and the steered yaw rate, determining the vehicle is in an unstable condition by comparing the yaw error rate to a first predetermined yaw rate, computing a calculated lateral speed based on acceleration data from the lateral acceleration sensor, the forward speed, and the actual yaw rate in response to determining the vehicle is in the unstable condition, calculating a correction factor based on the calculated lateral speed of the vehicle and the forward speed of the vehicle, and adjusting operation of the electronic stability control system by the correction factor.
摘要:
Improved active vibration control (AVC) devices, systems, and related methods are provided herein. An AVC device includes a controller adapted to receive real-time aircraft information and adjust at least one control parameter as a function of the real-time aircraft information is provided. An AVC device is adapted to detect changes in real-time aircraft information, as the aircraft moves from a steady state to transient performance, low and high air speeds, or vice versa. An AVC system (e.g., AVCS) includes one or more sensors, one or more actuators, and a controller adapted to receive real-time aircraft information and adjust at least one control parameter. In some aspects, a method of controlling vibration within an aircraft includes receiving vibration information from at least one sensor, receiving real-time aircraft information from an avionics system, adjusting at least one control parameter used in a control algorithm, and generating a force command.
摘要:
Improved force generator (FG) devices and methods are provided herein. A FG device (10) includes a housing (16, 18), a shaft (S) centrally disposed within the housing, and multiple imbalance rotors (30, 32, 34, 36, 38) disposed within the housing and provided along the shaft. At least two pairs (PA, PB) of imbalance rotors are provided in a nested configuration with respect to each other along the shaft. The at least two pairs (PA, PB) of imbalance rotors are supported in the nested configuration by large and small bearings (BA, BB). Any two imbalance rotors are paired to rotate together in a same direction according to a desired vibration canceling force. A method of controlling vibration within a structure is provided. The method includes detecting vibration, receiving a force command at a FG device, and pairing any two imbalance masses together and rotating a pair of imbalance masses via the rotors together in a same direction to cancel the detected vibration.
摘要:
The present subject matter relates to systems and methods for active vibration control system speed monitoring and control in which a speed protection monitor configured to receive index pulses as inputs to monitor the speed of one or more force generators. A rotary actuator control system can be connected in communication with the speed protection monitor and the one or more force generators, wherein the rotary actuator control system is configured to shut down or adjust the speed of the one or more force generators if the one or more force generators are determined to be operating at undesired speeds.